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what is offered here?

Fundamentals & Overview
as well as perspectives, paths, methods, implementations, 

and questions

of/into/for/about

Concurrent & Distributed Systems
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who could be interested in this?

anybody who …

… works with real-world scale computer systems
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who could be interested in this?

anybody who …

… works with real-world scale computer systems

… would like to learn how to analyse and design
operational and robust systems
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who could be interested in this?

anybody who …

… works with real-world scale computer systems

… would like to learn how to analyse and design
operational and robust systems

… would like to understand more about the existing trade-off between 
theory, the real-world, traditions, and pragmatism

in computer science
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who could be interested in this?

anybody who …

… works with real-world scale computer systems

… would like to learn how to analyse and design
operational and robust systems

… would like to understand more about the existing trade-off between 
theory, the real-world, traditions, and pragmatism

in computer science

… would like to know what you do not know about concurrent systems
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who are these people? – introduction

This course will be given by

Uwe R. Zimmer
Tutoring by

Jie Cai, Navinda Kottege, Nguyen Tran
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how will this all be done?

☞ Lectures:

• 3 per week … all the nice stuff and theory 
Monday, 15:00 (PHYS-T1); Wednesday 9:00 (COP-G031); Friday 14:00 (CHEM-T)

☞ Laboratories:

• 2 hours per week … all the rough stuff and practice
time slots: on our web-site – all in CSIT N114
laboratory-enrolment: https://cs.anu.edu.au/streams/

☞ Resources:

• introduced in the lectures and collected on the course page: 
http://cs.anu.edu.au/student/comp2310/
… as well as schedules, slides, sources, forums, etc. pp. … keep an eye on this page!

☞ Assessment:

• exam at the end of the course (70%) plus two assignments (15% each), and mid-term check (0%)
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Useful Literature

[Ben-Ari06]
M. Ben-Ari
Principles of Concurrent 
and Distributed Programming
2006, second edition
Prentice-Hall, 
ISBN 0-13-711821-X

Main technical textbook for this course. 

• Many algorithms and basic concepts 
will be found here

☞ references for specific aspects of the course will be given at appropriate places
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Topics

1.Concurrency [3]

2.Mutual exclusion [3]

3.Condition 
synchronization [4]

4.Non-determinism in
concurrent systems [2]

5.Scheduling [2]

6.Safety and liveness [3]

7.Architectures 
for CDS [3]

8.Distributed systems [8]
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Lectures 2008 

[number of lectures] - total: ≈28

1. Concurrency [3]
1.1. Forms of concurrency [1]

• Coupled dynamical systems
1.2. Models and terminology [1]

• Abstractions
• Interleaving
• Atomicity
• Proofs in concurrent 

and distributed systems
1.3. Processes & threads1 [1]

• Basic definitions
• Process states
• Implementations

2. Mutual exclusion [3]
2.1. by shared variables [2]

• Failure possibilities
• Dekker’s algorithm

2.2. by test-and-set hardware support [0.5]
• Minimal hardware support

2.3. by semaphores1 [0.5]
• Dijkstra definition
• OS semaphores

3. Condition synchronization [4]
3.1. Shared memory synchronization [2]

• Semaphores1

• Cond. variables
• Conditional critical regions
• Monitors
• Protected objects

3.2. Message passing [2]

• Asynchronous / synchronous1

• Remote invocation / rendezvous

• Message structure

• Addressing

4. Non-determinism [2]
in concurrent systems

4.1. Correctness under non-determinism 
[1]

• Forms of non-determinism

• Non-determinism in 
concurrent/distributed systems

• Is consistency/correctness plus 
non-determinism a contradiction?

4.2. Select statements1 [1]

• Forms of non-deterministic message 
reception

5. Scheduling [2]

5.1. Problem definition and design space 
[1]

• Which problems are addressed / solved 
by scheduling?

5.2. Basic scheduling methods [1]

• Assumptions for basic scheduling

• Basic methods

6. Safety and liveness [3]
6.1. Safety properties

• Examples for essential time-independent 
safety properties

6.2. Livelocks, fairness
• Forms of livelocks
• Classification of fairness

6.3. Deadlocks
• Detection
• Avoidance 
• Prevention (& recovery)

6.4. Failure modes
6.5. Idempotent & atomic operations

• Definitions
• Examples

7. Architectures for CDS [3]
7.1. Academic

• CSP
• occam

7.2. Production
• Ada95
• JAVA

7.3. Historical roots: UNIX1

• UNIX processes
• UNIX communication schemes

7.4. Dedicated hardware
• Communication controllers

7.5. Embedded systems

8. Distributed systems [8]
8.1. Networks [1]

• OSI model

• Network implementations

8.2. Global times [1]
• synchronized clocks

• logical clocks

8.3. Distributed states [1]
• Consistency

• Snapshots

• Termination

8.4. Distributed communication [1]
• Name spaces

• Multi-casts

• Elections

• Network identification

• Dynamical groups

8.5. Distributed safety and liveness [1]
• Distributed deadlock detection

8.6. Forms of distribution/redundancy [1]
• computation 

• memory

• operations

8.7. Transactions [2]
1. additional UNIX / C / POSIX 
references and examples
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Laboratories & Assignments 2008 

[number of labs] - total: 9

Laboratories

1. Concurrency language support 
basics (in Ada95) [3]

1.1. Structured, strongly typed 
programming

• Program structures
• Data structures

1.2. Generic, re-usable programming
• Generics
• Abstract types

1.3. Concurrent processes: 
• Creation
• Termination
• Rendezvous

2. Concurrent programming [3]
2.1. Synchronization

• Protected objects 

2.2. Remote invocation
• Extended rendezvous

2.3. Client-Server architectures
• Entry families
• Requeue facility

3. Concurrency in a multi-core system[3]
3.1. Multi-core process creation, termination
3.2. Multi-core process communication

Assignments

1. Concurrent programming [15%]
Ada95 programming task involving: 
• Mutual exclusion
• Synchronization
• Message passing

2. Concurrent programming in multi-core systems
[15%]
Multi-core programming task involving: 
• Process communication

Examination & Checkpoints

1. Mid-term check
• Test question set with supplied answers [not marked]

2. Final exam – [70%]
• Examining the complete lecture

Marking

The final mark is based on the assignments [30%] 
plus the final examination [70%]



Ada refresher course
Uwe R. Zimmer

The Australian National University
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References for this chapter

[Cohen96]
Norman H. Cohen
Ada as a second language
McGraw-Hill series in computer science, 2nd
edition

[Ada 95 Reference manual]
(see lab pages or web)
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Ada95

Ada95 is a standardized (ISO/IEC 8652:1995(E)) ‘general purpose’ language 
with core language primitives for

• strong typing, separate compilation (specification and implementation),
object-orientation, 

• concurrency, monitors, rpcs, timeouts, scheduling, priority ceiling locks

• strong run-time environments

… and standardized language-annexes for

• additional real-time features, distributed programming, 
system-level programming, numeric, informations systems, 
safety and security issues.
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Ada95

A crash course
… refreshing:

• specification and implementation (body) parts, basic types

• exceptions

• information hiding in specifications (‘private’)

• generic programming

• class-wide programming (‘tagged types’)

• monitors and synchronisation (‘protected’, ‘entries’, ‘selects’, ‘accepts’)

• abstract types and dispatching
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Ada95

Basics
… introducing:

• specification and implementation (body) parts

• constants

• some basic types (integer specifics)

• some type attributes

• parameter specification



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 26 of 896 (Chapter 1: to 66)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A simple queue specification

package Queue_Pack_Simple is

   QueueSize : constant Positive := 10;
   type Element is new Positive range 1_000..40_000;
   type Marker is mod QueueSize;
   type List is array (Marker'Range) of Element;
   type Queue_Type is record
      Top, Free : Marker := Marker'First;
      Elements  : List;
   end record;

   procedure Enqueue (Item: in  Element; Queue: in out Queue_Type);
   procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

end Queue_Pack_Simple;
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A simple queue implementation

package body Queue_Pack_Simple is

   procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
   begin
      Queue.Elements (Queue.Free) := Item;
      Queue.Free := Queue.Free - 1;
   end Enqueue;

   procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
   begin
      Item      := Queue.Elements (Queue.Top);
      Queue.Top := Queue.Top - 1;
    end Dequeue;

end Queue_Pack_Simple;
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A simple queue test program

with Queue_Pack_Simple; use Queue_Pack_Simple;

procedure Queue_Test_Simple is

   Queue : Queue_Type;
   Item  : Element;

begin
   Enqueue (2000, Queue);
   Dequeue (Item, Queue);
   Dequeue (Item, Queue); -- will produce an unpredictable result!
end Queue_Test_Simple;
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Ada95

Exceptions
… introducing:

• exception handling

• enumeration types

• functional type attributes
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A queue specification with proper exceptions

package Queue_Pack_Exceptions is

   QueueSize : constant Integer := 10;
   type Element is (Up, Down, Spin, Turn);
   type Marker is mod QueueSize;
   type List is array (Marker'Range) of Element;
   type Queue_State is (Empty, Filled);
   type Queue_Type is record
      Top, Free : Marker      := Marker'First;
      State     : Queue_State := Empty;
      Elements  : List;
   end record;

   procedure Enqueue (Item: in  Element; Queue: in out Queue_Type);
   procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

   Queueoverflow, Queueunderflow : exception;

end Queue_Pack_Exceptions;
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A queue implementations with proper exceptions

package body Queue_Pack_Exceptions is

   procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
   begin
      if Queue.State = Filled and Queue.Top = Queue.Free then
         raise Queueoverflow;
      end if;
      Queue.Elements (Queue.Free) := Item;
      Queue.Free  := Marker'Pred (Queue.Free);
      Queue.State := Filled;
   end Enqueue;

   procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
   begin
      if Queue.State = Empty then
         raise Queueunderflow;
      end if;
      Item      := Queue.Elements (Queue.Top);
      Queue.Top := Marker'Pred (Queue.Top);
      if Queue.Top = Queue.Free then Queue.State := Empty; end if;
   end Dequeue;

end Queue_Pack_Exceptions;
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A queue test program with proper exceptions

with Queue_Pack_Exceptions; use Queue_Pack_Exceptions;
with Ada.Text_IO;           use Ada.Text_IO;

procedure Queue_Test_Exceptions is

   Queue : Queue_Type;
   Item  : Element;

begin
   Enqueue (Turn, Queue);
   Dequeue (Item, Queue);
   Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
   when Queueunderflow   => Put ("Queue underflow");
   when Queueoverflow    => Put ("Queue overflow");

end Queue_Test_Exceptions;
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Ada95

Information hiding (private parts)
… introducing:

• private ☞ assignments and comparisons are allowed

• limited private ☞ entity cannot be assigned or compared
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A queue specification with proper information hiding

package Queue_Pack_Private is

   QueueSize : constant Integer := 10;
   type Element is new Positive range 1..1000;
   type Queue_Type is limited private;

   procedure Enqueue (Item: in  Element; Queue: in out Queue_Type);
   procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

   Queueoverflow, Queueunderflow : exception;

private
   type Marker is mod QueueSize;
   type List is array (Marker'Range) of Element;
   type Queue_State is (Empty, Filled);
   type Queue_Type is record
      Top, Free : Marker      := Marker'First;
      State     : Queue_State := Empty;
      Elements  : List;
   end record;
end Queue_Pack_Private;
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A queue implementations with proper information hiding

package body Queue_Pack_Private is

   procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
   begin
      if Queue.State = Filled and Queue.Top = Queue.Free then
         raise Queueoverflow;
      end if;
      Queue.Elements (Queue.Free) := Item;
      Queue.Free  := Marker'Pred (Queue.Free);
      Queue.State := Filled;
   end Enqueue;

   procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
   begin
      if Queue.State = Empty then
         raise Queueunderflow;
      end if;
      Item      := Queue.Elements (Queue.Top);
      Queue.Top := Marker'Pred (Queue.Top);
      if Queue.Top = Queue.Free then Queue.State := Empty; end if;
   end Dequeue;

end Queue_Pack_Private;

identical
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A queue test program with proper information hiding

with Queue_Pack_Private; use Queue_Pack_Private;
with Ada.Text_IO;        use Ada.Text_IO;

procedure Queue_Test_Private is

   Queue, Queue_Copy : Queue_Type;
   Item              : Element;

begin
   Queue_Copy := Queue;
       -- compiler-error: left hand of assignment must not be limited type
   Enqueue (Item => 1, Queue => Queue);
   Dequeue (Item, Queue);
   Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
   when Queueunderflow   => Put ("Queue underflow");
   when Queueoverflow    => Put ("Queue overflow");
end Queue_Test_Private;
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Ada95

Generic packages
… introducing:

• specification of generic packages

• instantiation of generic packages
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A generic queue specification

generic
   type Element is private;

package Queue_Pack_Generic is

   QueueSize: constant Integer := 10;
   type Queue_Type is limited private;

   procedure Enqueue (Item: in  Element; Queue: in out Queue_Type);
   procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

   Queueoverflow, Queueunderflow : exception;

private
   type Marker is mod QueueSize;
   type List is array (Marker'Range) of Element;
   type Queue_State is (Empty, Filled);
   type Queue_Type is record
      Top, Free : Marker      := Marker'First;
      State     : Queue_State := Empty;
      Elements  : List;
   end record;
end Queue_Pack_Generic;
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A generic queue implementation
package body Queue_Pack_Generic is

   procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
   begin
      if Queue.State = Filled and Queue.Top = Queue.Free then
         raise Queueoverflow;
      end if;
      Queue.Elements (Queue.Free) := Item;
      Queue.Free  := Queue.Free - 1;
      Queue.State := Filled;
   end Enqueue;

   procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
   begin
      if Queue.State = Empty then
         raise Queueunderflow;
      end if;
      Item      := Queue.Elements (Queue.Top);
      Queue.Top := Queue.Top - 1;
      if Queue.Top = Queue.Free then Queue.State := Empty; end if;
   end Dequeue;

end Queue_Pack_Generic;

identical
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A generic queue test program

with Queue_Pack_Generic;
with Ada.Text_IO;        use Ada.Text_IO;

procedure Queue_Test_Generic is

   package Queue_Pack_Positive is
      new Queue_Pack_Generic (Element => Positive);
   use Queue_Pack_Positive;

   Queue : Queue_Type;
   Item  : Positive;

begin
   Enqueue (Item => 1, Queue => Queue);
   Dequeue (Item, Queue);
   Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
   when Queueunderflow   => Put ("Queue underflow");
   when Queueoverflow    => Put ("Queue overflow");
end Queue_Test_Generic;
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Ada95

Object oriented programming I
… introducing:

• tagged types ☞ the Ada-way to say that this type can be extended

• derivation of tagged types

• method overwriting

• usage of parent entities
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An open queue base class specification

package Queue_Pack_Object_Base is

   QueueSize : constant Integer := 10;
   type Element is new Positive range 1..1000;
   type Marker is mod QueueSize;
   type List is array (Marker'Range) of Element;
   type Queue_State is (Empty, Filled);
   type Queue_Type is tagged record
      Top, Free : Marker      := Marker'First;
      State     : Queue_State := Empty;
      Elements  : List;
   end record;

   procedure Enqueue (Item: in  Element; Queue: in out Queue_Type);
   procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

   Queueoverflow, Queueunderflow : exception;

end Queue_Pack_Object_Base;
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An open queue base class implementation

package body Queue_Pack_Object_Base is

   procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
   begin
      if Queue.State = Filled and Queue.Top = Queue.Free then
         raise Queueoverflow;
      end if;
      Queue.Elements (Queue.Free) := Item;
      Queue.Free  := Queue.Free - 1;
      Queue.State := Filled;
   end Enqueue;

   procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
   begin
      if Queue.State = Empty then
         raise Queueunderflow;
      end if;
      Item      := Queue.Elements (Queue.Top);
      Queue.Top := Queue.Top - 1;
      if Queue.Top = Queue.Free then Queue.State := Empty; end if;
   end Dequeue;
end Queue_Pack_Object_Base;

identical
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A derived open queue class specification

with Queue_Pack_Object_Base; use Queue_Pack_Object_Base;

package Queue_Pack_Object is

   type Ext_Queue_Type is new Queue_Type with record
      Reader       : Marker      := Marker'First;
      Reader_State : Queue_State := Empty;
   end record;

   procedure Enqueue    (Item: in  Element; Queue: in out Ext_Queue_Type);
   procedure Read_Queue (Item: out Element; Queue: in out Ext_Queue_Type);

end Queue_Pack_Object;
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A derived open queue class implementation

package body Queue_Pack_Object is

   procedure Enqueue (Item: in  Element; Queue: in out Ext_Queue_Type) is
   begin
      Enqueue (Item, Queue_Type (Queue));
      Queue.Reader_State := Filled;
   end Enqueue;

   procedure Read_Queue (Item: out Element; Queue: in out Ext_Queue_Type) is
   begin
      if Queue.Reader_State = Empty then
         raise Queueunderflow;
      end if;
      Item         := Queue.Elements (Queue.Reader);
      Queue.Reader := Queue.Reader - 1;
      if Queue.Reader = Queue.Free then Queue.Reader_State := Empty; end if;
   end Read_Queue;

end Queue_Pack_Object;
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An open class test program

with Queue_Pack_Object_Base; use Queue_Pack_Object_Base;
with Queue_Pack_Object;      use Queue_Pack_Object;
with Ada.Text_IO;            use Ada.Text_IO;

procedure Queue_Test_Object is

   Queue : Ext_Queue_Type;
   Item  : Element;

begin
   Enqueue (Item => 1, Queue => Queue);
   Read_Queue (Item, Queue);
   Enqueue (Item => 5, Queue => Queue);
   Dequeue (Item, Queue);
   Dequeue (Item, Queue);
   Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
   when Queueunderflow   => Put ("Queue underflow");
   when Queueoverflow    => Put ("Queue overflow");
end Queue_Test_Object;
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Ada95

Object oriented programming II
… introducing:

• private tagged types 

• objects which are protected against their children also
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An encapsulated queue base class specification

package Queue_Pack_Object_Base_Private is

   QueueSize : constant Integer := 10;
   type Element is new Positive range 1..1000;
   type Queue_Type is tagged limited private;

   procedure Enqueue (Item: in  Element; Queue: in out Queue_Type);
   procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

   Queueoverflow, Queueunderflow : exception;

private
   type Marker is mod QueueSize;
   type List is array (Marker'Range) of Element;
   type Queue_State is (Empty, Filled);
   type Queue_Type is tagged limited record
      Top, Free : Marker      := Marker'First;
      State     : Queue_State := Empty;
      Elements  : List;
   end record;

end Queue_Pack_Object_Base_Private;
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An encapsulated queue base class implementation

package body Queue_Pack_Object_Base_Private is

   procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
   begin
      if Queue.State = Filled and Queue.Top = Queue.Free then
         raise Queueoverflow;
      end if;
      Queue.Elements (Queue.Free) := Item;
      Queue.Free  := Queue.Free - 1;
      Queue.State := Filled;
   end Enqueue;

   procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
   begin
      if Queue.State = Empty then
         raise Queueunderflow;
      end if;
      Item      := Queue.Elements (Queue.Top);
      Queue.Top := Queue.Top - 1;
      if Queue.Top = Queue.Free then Queue.State := Empty; end if;
   end Dequeue;

end Queue_Pack_Object_Base_Private;

identical
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A derived encapsulated queue class specification

with Queue_Pack_Object_Base_Private; use Queue_Pack_Object_Base_Private;

package Queue_Pack_Object_Private is

   type Ext_Queue_Type is new Queue_Type with private;
   subtype Depth_Type is Positive range 1..QueueSize;

   procedure Look_Ahead (Item: out Element;
                         Depth: in Depth_Type; Queue: in out Ext_Queue_Type);

private
   type Ext_Queue_Type is new Queue_Type with null record;

end Queue_Pack_Object_Private;
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A derived encapsulated queue class implementation

package body Queue_Pack_Object_Private is

   procedure Look_Ahead (Item: out Element;
                      Depth: in Depth_Type; Queue: in out Ext_Queue_Type) is

      Storage     : Queue_Type;
      ShuffleItem : Element;

   begin
      for I in 1..Depth - 1 loop
         Dequeue (ShuffleItem, Queue);
         Enqueue (ShuffleItem, Storage);
      end loop;
      Dequeue (Item, Queue);
      Enqueue (Item, Storage);
(…)
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(…)

  Read_The_Rest:
      begin
         for I in 1..QueueSize - Depth loop
            Dequeue (ShuffleItem, Queue);
            Enqueue (ShuffleItem, Storage);
         end loop;
      exception
         when Queueunderflow => null; -- read the rest is done
      end Read_The_Rest;
  Restore_The_Queue:
      begin
         for I in 1..QueueSize loop
            Dequeue (ShuffleItem, Storage);
            Enqueue (ShuffleItem, Queue);
         end loop;
      exception
         when Queueunderflow => null; -- restore is done
      end Restore_The_Queue;

   end Look_Ahead;

end Queue_Pack_Object_Private;

bad
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An encapsulated class test program

with Queue_Pack_Object_Base_Private; use Queue_Pack_Object_Base_Private;
with Queue_Pack_Object_Private;      use Queue_Pack_Object_Private;
with Ada.Text_IO;                    use Ada.Text_IO;

procedure Queue_Test_Object_Private is

   Queue : Ext_Queue_Type;
   Item  : Element;

begin
   Enqueue (Item => 1, Queue => Queue);
   Enqueue (Item => 1, Queue => Queue);
   Look_Ahead (Item => Item, Depth => 2, Queue => Queue);
   Enqueue (Item => 5, Queue => Queue);
   Dequeue (Item, Queue);
   Dequeue (Item, Queue);
   Dequeue (Item, Queue);
   Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
   when Queueunderflow   => Put ("Queue underflow");
   when Queueoverflow    => Put ("Queue overflow");
end Queue_Test_Object_Private;
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Ada95

Tasks & Monitors
… introducing:

• protected types

• tasks (definition, instantiation and termination)

• task synchronisation

• entry guards

• entry calls

• accept and selected accept statements
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A protected queue specification

Package Queue_Pack_Protected is

   QueueSize : constant Integer := 10;
   subtype Element is Character;
   type Queue_Type is limited private;

   Protected type Protected_Queue is

      entry Enqueue (Item: in  Element);
      entry Dequeue (Item: out Element);

   private
      Queue : Queue_Type;

   end Protected_Queue;

private
   type Marker is mod QueueSize;
   type List is array (Marker'Range) of Element;
   type Queue_State is (Empty, Filled);
   type Queue_Type is record
      Top, Free : Marker      := Marker'First;
      State     : Queue_State := Empty;
      Elements  : List;
   end record;
end Queue_Pack_Protected;



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 56 of 896 (Chapter 1: to 66)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A protected queue implementation

package body Queue_Pack_Protected is

   protected body Protected_Queue is

      entry Enqueue (Item: in Element) when
        Queue.State = Empty or Queue.Top /= Queue.Free is
      begin
         Queue.Elements (Queue.Free) := Item;
         Queue.Free  := Queue.Free - 1;
         Queue.State := Filled;
      end Enqueue;

      entry Dequeue (Item: out Element) when
        Queue.State = Filled is
      begin
         Item      := Queue.Elements (Queue.Top);
         Queue.Top := Queue.Top - 1;
         if Queue.Top = Queue.Free then Queue.State := Empty; end if;
      end Dequeue;

   end Protected_Queue;
end Queue_Pack_Protected;
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A multitasking protected queue test program 

with Queue_Pack_Protected; use Queue_Pack_Protected;
with Ada.Text_IO;          use Ada.Text_IO;

procedure Queue_Test_Protected is

   Queue : Protected_Queue;

   task Producer is entry shutdown; end Producer;
   task Consumer is                 end Consumer;

   task body Producer is
      Item   : Element;
      Got_It : Boolean;
   begin
      loop
         select
            accept shutdown; exit; -- main task loop
         else
            Get_Immediate (Item, Got_It);
            if Got_It then
               Queue.Enqueue (Item); -- task might be blocked here!
            else
               delay 0.1; --sec.
            end if;
         end select;
      end loop;
   end Producer;

(…)
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A multitasking protected queue test program (cont.)

(…)   

   task body Consumer is
      Item  : Element;
   begin
      loop
         Queue.Dequeue (Item); -- task might be blocked here!
         Put ("Received: "); Put (Item); Put_Line ("!");
         if Item = 'q' then
            Put_Line ("Shutting down producer"); Producer.Shutdown;
            Put_Line ("Shutting down consumer"); exit; -- main task loop
         end if;
      end loop;
   end Consumer;

begin
   null;
end Queue_Test_Protected;
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Ada95

Abstract types & dispatching
… introducing:

• abstract tagged types

• abstract subroutines

• concrete implementation of abstract types

• dispatching to different packages, tasks, and partitions 
according to concrete types
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An abstract queue specification

package Queue_Pack_Abstract is

   subtype Element is Character;
   type Queue_Type is abstract tagged limited private;

   procedure Enqueue (Item: in  Element; Queue: in out Queue_Type) is 
      abstract;
   procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is 
      abstract;

private
   type Queue_Type is abstract tagged limited null record;
end Queue_Pack_Abstract;
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A concrete queue specification

with Queue_Pack_Abstract; use Queue_Pack_Abstract;

package Queue_Pack_Concrete is

   QueueSize : constant Integer := 10;
   type Real_Queue is new Queue_Type with private;

   procedure Enqueue (Item: in  Element; Queue: in out Real_Queue);
   procedure Dequeue (Item: out Element; Queue: in out Real_Queue);

   Queueoverflow, Queueunderflow : exception;

private
   type Marker is mod QueueSize;
   type List is array (Marker'Range) of Element;
   type Queue_State is (Empty, Filled);
   type Real_Queue is new Queue_Type with record
      Top, Free : Marker      := Marker'First;
      State     : Queue_State := Empty;
      Elements  : List;
   end record;
end Queue_Pack_Concrete;
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A concrete queue implementation

package body Queue_Pack_Concrete is

   procedure Enqueue (Item: in Element; Queue: in out Real_Queue) is
   begin
      if Queue.State = Filled and Queue.Top = Queue.Free then
         raise Queueoverflow;
      end if;
      Queue.Elements (Queue.Free) := Item;
      Queue.Free  := Queue.Free - 1;
      Queue.State := Filled;
   end Enqueue;

   procedure Dequeue (Item: out Element; Queue: in out Real_Queue) is
   begin
      if Queue.State = Empty then
         raise Queueunderflow;
      end if;
      Item      := Queue.Elements (Queue.Top);
      Queue.Top := Queue.Top - 1;
      if Queue.Top = Queue.Free then Queue.State := Empty; end if;
   end Dequeue;

end Queue_Pack_Concrete;
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A multitasking dispatching test program

with Queue_Pack_Abstract; use Queue_Pack_Abstract;
with Queue_Pack_Concrete; use Queue_Pack_Concrete;

procedure Queue_Test_Dispatching is

   type Queue_Class is access all Queue_Type'class;

   task Queue_Holder is -- could be on an individual partition
      entry Queue_Filled;
   end Queue_Holder;

   task Queue_User is   -- could be on an individual partition
      entry Send_Queue (Remote_Queue: in Queue_Class);
   end Queue_User;
(…)
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   task body Queue_Holder is
      Local_Queue : Queue_Class;
      Item        : Element;
   begin
      Local_Queue := new Real_Queue; -- could be a different implementation!
      Queue_User.Send_Queue (Local_Queue);
      accept Queue_Filled do
         Dequeue (Item, Local_Queue.all); -- Item will be 'r'
      end Queue_Filled;
   end Queue_Holder;

   task body Queue_User is
      Local_Queue : Queue_Class;
      Item        : Element;
   begin
      Local_Queue := new Real_Queue; -- could be a different implementation!
      accept Send_Queue (Remote_Queue: in Queue_Class) do
         Enqueue ('r', Remote_Queue.all); -- potentially a rpc!
         Enqueue ('l', Local_Queue.all);
      end Send_Queue;
      Queue_Holder.Queue_Filled;
      Dequeue (Item, Local_Queue.all); -- Item will be 'l'
   end Queue_User;

begin null; end Queue_Test_Dispatching;



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 65 of 896 (Chapter 1: to 66)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Ada95

Ada95 language status
• Established language standard with free and 

commercial compilers available for all major OSs.

• Stand-alone runtime environments for embedded systems 
(some are only available commercially).

• Special (yet non-standard) extensions (i.e. language reductions and
proof systems) for extreme small footprint embedded systems or high
integrity real-time environments available ☞ Ravenscar profile systems.

☞ has been used and is in use in numberless large scale projects 
(e.g. in the international space station, and in some spectacular crashes: e.g. Ariane 5)

☞ Ada2005 compilers are available now!
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Summary 

Ada refresher course
• Specification and implementation (body) parts, basic types

• Exceptions

• Information hiding in specifications (‘private’)

• Generic programming

• Class-wide programming (‘tagged types’)

• Monitors and synchronisation (‘protected’, ‘entries’, ‘selects’, ‘accepts’)

• Abstract types and dispatching



1
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Forms of concurrency

What is concurrency?
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Forms of concurrency

What is concurrency?
Working definitions:

• literally ‘concurrent’ means:

Adj.: Running together in space, as parallel lines; going on side by side,
as proceedings; occurring together, as events or circumstances; existing
or arising together; conjoint, associated [Oxfords English Dictionary]
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Forms of concurrency

What is concurrency?
Working definitions:

• literally ‘concurrent’ means:

Adj.: Running together in space, as parallel lines; going on side by side,
as proceedings; occurring together, as events or circumstances; existing
or arising together; conjoint, associated [Oxfords English Dictionary]

• technically ‘concurrent’ is usually defined negatively as:

If there is no observer who can identify two events as being in strict tem-
poral sequence (i.e. one event has fully terminated before the other one
started) then these two events are considered concurrent.
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Forms of concurrency

Why do we need/have concurrency?
• Physics, engineering, electronics, biology, …

☞ basically every real world system is concurrent!
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Forms of concurrency

Why do we need/have concurrency?
• Physics, engineering, electronics, biology, …

☞ basically every real world system is concurrent!
• Sequential processing is suggested by most kernel computer architectures

… but almost all current processor architectures have concurrent elements
… and most computer systems are part of a concurrent network 

• Strict sequential processing is suggested by the most widely used programming languages

… which is a reason why you might believe that concurrent computing is rare/exotic/hard
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Forms of concurrency

Why do we need/have concurrency?
• Physics, engineering, electronics, biology, …

☞ basically every real world system is concurrent!
• Sequential processing is suggested by most kernel computer architectures

… but almost all current processor architectures have concurrent elements
… and most computer systems are part of a concurrent network 

• Strict sequential processing is suggested by the most widely used programming languages

… which is a reason why you might believe that concurrent computing is rare/exotic/hard

☞ sequential programming delivers some fundamental parts for
concurrent programming

☞ but we need to add a number of further crucial concepts
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Forms of concurrency

Why would a computer scientist consider concurrency?

☞ … to be able to connect computer systems with the real world

☞ … to be able to employ / design concurrent parts of computer architectures

☞ … to construct complex software packages (operating systems, compilers, databases, …)

☞ … to understand where sequential and/or concurrent programming is required

… or: to understand where sequential or concurrent programming can be chosen freely

☞ … to enhance the reactivity of a system

☞ …
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Forms of concurrency

A computer scientist’s view on concurrency
• Overlapped I/O and computation

☞ employ interrupt programming 
to handle I/O

• Multi-programming

☞ allow multiple independent programs 
to be executed on one cpu

• Multi-tasking

☞ allow multiple interacting processes 
to be executed on one cpu

• Multi-processor systems

☞ add physical/real concurrency

• Parallel Machines &
distributed operating systems  

☞ add (non-deterministic) 
communication channels

• General network architectures

☞ allow for any form of 
communicating, distributed entities
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Forms of concurrency

A computer scientist’s view on concurrency

Terminology for real parallel machines architectures:

• SISD [singe instruction, single data]

☞ standard sequential processors

• SIMD [singe instruction, multiple data]

☞ vector processors

• MISD [multiple instruction, single data]

☞ pipelines

• MIMD [multiple instruction, multiple data]

☞ multiprocessors 
or computer networks
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Forms of concurrency

An engineer’s view on concurrency

☞ Multiple physical, coupled, dynamical systems 
form the actual environment and/or task at hand

☞ In order to model and control such a system, its inherent concurrency needs to be considered

☞ Multiple less powerful processors are often preferred over a single high-performance cpu

☞ The system design of usually strictly based on the structure of the given physical system.
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Forms of concurrency

Does concurrency lead to chaos?
Concurrency often leads to the following features / issues / problems:

• non-deterministic phenomena
• non-observable system states
• results may depend on more than just the input parameters and states at start time

(timing, throughput, load, available resources, signals … throughout the execution)
• non-reproducibility ☞ debugging?
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Forms of concurrency

Does concurrency lead to chaos?
Concurrency often leads to the following features / issues / problems:

• non-deterministic phenomena
• non-observable system states
• results may depend on more than just the input parameters and states at start time

(timing, throughput, load, available resources, signals … throughout the execution)
• non-reproducibility ☞ debugging?

Meaningful employment of concurrent systems features:

• non-determinism employed where the underlying system is non-deterministic
• non-determinism employed where the actual execution sequence is meaningless
• synchronization employed where adequate … but only there
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Forms of concurrency

Does concurrency lead to chaos?
Concurrency often leads to the following features / issues / problems:

• non-deterministic phenomena
• non-observable system states
• results may depend on more than just the input parameters and states at start time

(timing, throughput, load, available resources, signals … throughout the execution)
• non-reproducibility ☞ debugging?

Meaningful employment of concurrent systems features:

• non-determinism employed where the underlying system is non-deterministic
• non-determinism employed where the actual execution sequence is meaningless
• synchronization employed where adequate … but only there

☞ Control & monitor where required (and do it right), but not more …
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Models and Terminology

Concurrency on different abstraction levels / perspectives
☞ Networks

• Multi-CPU network nodes and other specialized sub-networks

• Single-CPU network nodes – still including buses & I/O sub-systems

• Single-CPUs

• Operating systems (& distributed operating systems)

☞ Processes & threads

☞ High-level concurrent programming

☞ Assembler level concurrent programming

• Individual concurrent units inside one CPU

• Individual electronic circuits

• … 
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Models and Terminology

The concurrent programming abstraction

1.What appears sequential on a higher abstraction level, 
is usually concurrent at a lower abstraction level:

☞ e.g. low-level concurrent I/O drivers, which might not be visible at a high programming level
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Models and Terminology

The concurrent programming abstraction

1.What appears sequential on a higher abstraction level, 
is usually concurrent at a lower abstraction level:

☞ e.g. low-level concurrent I/O drivers, which might not be visible at a high programming level

2.What appears concurrent on a higher abstraction level, 
might be sequential at a lower abstraction level:

☞ e.g. Multi-processing systems, which are executed on a single, sequential CPU
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Models and Terminology

The concurrent programming abstraction
• technically ‘concurrent’ is usually defined negatively as:

If there is no observer who can identify two events as being in strict tem-
poral sequence (i.e. one event has fully terminated before the other one
starts up), then these two events are considered concurrent.

• ‘concurrent’ in the context of programming:

“Concurrent programming abstraction is the study of interleaved execu-
tion sequences of the atomic instructions of sequential processes.” 
(Ben-Ari)
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Models and Terminology

The concurrent programming abstraction

Concurrent program ::= 
Multiple sequential programs (processes) 

which are executed simultaneously

P.S. it is generally assumed that simultaneous execution means 
that there is one execution unit (processor) per sequential program

– even though this is usually not correct, 
it is an often valid assumption in the context of concurrent programming.
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Models and Terminology

The concurrent programming abstraction

☞ No interaction between concurrent system parts means 
that we can analyse them individually as pure sequential programs.
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Models and Terminology

The concurrent programming abstraction

☞ No interaction between concurrent system parts means 
that we can analyse them individually as pure sequential programs.

☞ Interaction points:

• Contention:
multiple concurrent execution units compete for one shared resource

• Communication:
Explicit passing of information and/or synchronization
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Models and Terminology

The concurrent programming abstraction

Time-line or Sequence?

Consider time (durations) explicitly:

☞ Real-time systems ☞ join the appropriate courses
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Models and Terminology

The concurrent programming abstraction

Time-line or Sequence?

Consider time (durations) explicitly:

☞ Real-time systems ☞ join the appropriate courses

Consider the sequence of interaction points only:

☞ Non-real-time systems ☞ this course
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Models and Terminology

The concurrent programming abstraction

Correctness of concurrent non-real-time systems 
[logical correctness]:

• does not depend on speeds / execution times / delays

• does not depend on actual interleaving of concurrent processes
[scheduler]
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Models and Terminology

The concurrent programming abstraction

Correctness of concurrent non-real-time systems 
[logical correctness]:

• does not depend on speeds / execution times / delays

• does not depend on actual interleaving of concurrent processes
[scheduler]

☞ does depend on all possible sequences of interaction points
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Models and Terminology

The concurrent programming abstraction

Correctness vs. testing in concurrent systems:
Slight changes in external triggers may (and usually will) result in 
complete different schedules (interleaving):

☞ Concurrent programs which depend in any way on external influences cannot be tested easily

☞ Designs which are provably correct with respect to the specification 
and are independent of the actual timing behaviour are essential.

P.S. some timing restrictions for the scheduling still persist in non-real-time systems, e.g. ‘fairness’
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Models and Terminology

The concurrent programming abstraction

Atomic operations:
Correctness proofs / designs in concurrent systems rely on the assumptions of 

‘atomic operations’ [detailed discussion later]:

• complex and powerful atomic operations ease the correctness proofs, 
but may limit flexibility in the design

• simple atomic operations are theoretically sufficient, 
but may lead to complex systems which correctness cannot be proven in practice.
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Models and Terminology

The concurrent programming abstraction

Standard concepts of correctness:

• Partial correctness:

• Total correctness:

where  are input and output sets,
 is a property on the input set,

and  is a relation between input and output sets

P I( ) terminates Program I O,( )( )∧( ) Q I O,( )⇒

P I( ) terminates Program I O,( )( ) Q I O,( )∧( )⇒

I O,
P

Q
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Models and Terminology

The concurrent programming abstraction

Standard concepts of correctness:

• Partial correctness:

• Total correctness:

where  are input and output sets,
 is a property on the input set,

and  is a relation between input and output sets

☞ do these concepts apply to and are sufficient for concurrent systems?

P I( ) terminates Program I O,( )( )∧( ) Q I O,( )⇒

P I( ) terminates Program I O,( )( ) Q I O,( )∧( )⇒

I O,
P

Q
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Models and Terminology

The concurrent programming abstraction

Extended concepts of correctness in concurrent systems:

¬ Termination is often not intended or even considered a failure
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Models and Terminology

The concurrent programming abstraction

Extended concepts of correctness in concurrent systems:

¬ Termination is often not intended or even considered a failure

• Safety properties:

where  means that  does always hold
P I( ) Processes I S,( )∧( ) Q I S,( )⇒

Q Q
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Models and Terminology

The concurrent programming abstraction

Extended concepts of correctness in concurrent systems:

¬ Termination is often not intended or even considered a failure

• Safety properties:

where  means that  does always hold

• Liveness properties:

where  means that  does eventually hold (and will then stay true)
and  is the current state of the concurrent system

P I( ) Processes I S,( )∧( ) Q I S,( )⇒
Q Q

P I( ) Processes I S,( )∧( )  Q I S,( )◊⇒
 Q◊ Q

S
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Models and Terminology

The concurrent programming abstraction

• Safety properties:

where  means that  does always hold

Examples:

• Mutual exclusion (no resource collisions)

• Absence of deadlocks
(and other forms of ‘silent death’ and ‘freeze’ conditions)

• Specified responsiveness or free capabilities
(typical in real-time / embedded systems or server applications)

P I( ) Processes I S,( )∧( ) Q I S,( )⇒
Q Q
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Models and Terminology

The concurrent programming abstraction

• Liveness properties:

where  means that  does eventually hold (and will then stay true)

Examples:

• Requests need eventually to be completed

• The state of the system needs eventually be displayed to the outside

• No part of the system is to be delayed forever (fairness)

☞ Interesting liveness properties can be extremely hard to be proven

P I( ) Processes I S,( )∧( )  Q I S,( )◊⇒
 Q◊ Q
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Introduction to processes and threads

1 CPU 
per control-flow

for specific configurations only:

• distributed µcontrollers

• physical process control 
systems:
1 cpu per task, 
connected via a typ. fast 
bus-system (VME, PCI)

☞ no need for process 
management

CPU
stack

code

CPU
stack

code

CPU stack code

address space 1

shared memory

CPU
stack

code

CPU stack code

CPU stack code

address space n

shared memory

…
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Introduction to processes and threads

1 CPU
for all control-flows

• OS: emulate one CPU for 
every control-flow

☞ multi-tasking 
operating system

• support for memory 
protection becomes essential

stack
code

stack
code

stack code

address space 1

shared memory

stack
code

stack code

CPU

stack code

address space n

shared memory

…
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Introduction to processes and threads

Processes 

• Process ::= 
address space 
+ control flow(s)

• Kernel has full knowledge
about all processes as well as
their requirements 
and current resources 
(see below)

stack
code

stack
code

stack code

address space 1

shared memory

stack
code

stack code

CPU

stack code

address space n

shared memory

…
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Introduction to processes and threads

Threads
Threads (individual control-flows) 
can be handled:

• inside the kernel:

• kernel scheduling
• I/O block-releases 

according to external 
signal

• outside the kernel:

• user-level scheduling
• no signals to threads

stack
thread

stack
thread

stack thread

address space 1

shared memory

stack
thread

stack thread

CPU

stack thread

address space n

shared memory

…
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Introduction to processes and threads

Multi-processor-
systems

• The kernel may execute 
multiple processes at a time.

☞ Address space and resource 
restrictions of individual 
CPUs and processes/threads 
need to be considered.

☞ Caching, synchronization, 
and memory protection need 
to be adapted.

stack
thread

stack
thread

stack thread

address space 1

shared memory

stack
thread

stack thread

stack thread

address space n

shared memory
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Introduction to processes and threads

Symmetric Multi-
processing (SMP)

• all CPUs share the same 
physical address space 
(and access to resources)

☞ processes/threads can be 
executed on 
any available CPU

stack
thread

stack
thread

stack thread

address space 1

shared memory

stack
thread

stack thread
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Introduction to processes and threads

Processes ↔ Threads
Also processes can share memory 
and the exact interpretation of threads is different in different operating systems:

☞ Threads can be regarded as a group of processes, which share some resources 
(☞ process-hierarchy)

☞ Due to the overlap in resources, 
the attributes attached to threads are less than for ‘first-class-citizen-processes’

☞ Thread switching and inter-thread communications 
can be more efficient than on full-process-level

☞ Scheduling of threads depends on the actual thread implementations:

• e.g. user-level control-flows, which the kernel has no knowledge about at all
• e.g. kernel-level control-flows, which are handled as processes with some restrictions
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Introduction to processes and threads

Process Control Blocks
• Process Id

• Process state: 
{created, ready, executing, blocked, suspended, …}

• Scheduling info: 
priorities, deadlines, consumed CPU-time, …

• CPU state:
saved/restored information while context switches
(incl. the program counter, stack pointer, …)

• Memory spaces / privileges:
memory base, limits, shared areas, …

• Allocated resources / privileges:
open and requested devices and files

… PCBs are usually enqueued at a certain state or condition

Process Id

Process state

Saved registers
(complete CPU state)

Scheduling info

Memory spaces /
privileges 

Allocated resources /
privileges

Process Control Blocks (PCBs)
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Process states

• created: the task is ready to run, 
but not yet considered by any dispatcher 
– waiting for admission

• ready: ready to run 
– waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run 
– waiting for a a resource to become 
available

blockedblocked

ready running

blocked

dispatch

timeout

block
release

created

admit

terminated

finish

m
ai

n 
m

em
o

ry
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Process states

• created: the task is ready to run, 
but not yet considered by any dispatcher 
– waiting for admission

• ready: ready to run 
– waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run 
– waiting for a resource

• suspended states: swapped out of main 
memory (not time critical processes)
– waiting for main memory space 
(and other resources) 

blockedblocked

ready running

blocked

dispatch

timeout

block
release

created

admit

terminated

finish

blockedblockedblocked, susp.

suspend (swap-out)

ready, susp.

suspend (swap out)

release

reload (swap in)
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Process states

• created: the task is ready to run, 
but not yet considered by any dispatcher 
– waiting for admission

• ready: ready to run 
– waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run 
– waiting for a resource

• suspended states: swapped out of main 
memory (not time critical processes)
– waiting for main memory space 
(and other resources)

☞  dispatching and suspending
can be independent modules here

blockedblocked

ready running
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dispatch

timeout
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release
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Process states

CPU
creation

batch ready

ready, suspended

blocked, suspended

blocked

pre-emption or cycle done

termination

block or synchronize

executing
admitted dispatch

unblock suspend (swap-out)

swap-in

swap-out

unblock

suspend (swap-out)
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UNIX processes

In UNIX systems tasks are created by ‘cloning’
pid = fork ();

resulting in a duplication of the current process

• returning 0 to the newly created process (the ‘child’ process)

• returning the process id of the child process to the creating process (the ‘parent’ process) 
or -1 for a failure

Frequent usage:
if (fork () == 0) {
… the child’s task … 
… often implemented as: exec (“absolute path to executable file“, “args“);
exit (0);              /* terminate child process */

} else {
… the parent’s task …
pid = wait ();          /* wait for the termination of one child process */

}
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UNIX processes

Communication between UNIX tasks (‘pipes’)
int data_pipe [2], c, rc;

if (pipe (data_pipe) == -1) {
perror (“no pipe“); exit (1);

}

if (fork () == 0) {
close (data_pipe [1]);
while ((rc = read 
(data_pipe [0], &c, 1)) > 0) {
putchar (c);

}
if (rc == -1) {
perror (“pipe broken“); 
close (data_pipe [0]);
exit (1);

}
close (data_pipe [0]); exit (0);

} else {

close (data_pipe [0]);
while ((c = getchar ()) > 0) {
if (write 
(data_pipe[1], &c, 1) == -1) {
perror (“pipe broken“); 
close (data_pipe [1]); 
exit (1);

};
}
close (data_pipe [1]); 
pid = wait ();

}
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Concurrent programming languages

Requirement
• Concept of tasks, threads or other potentially concurrent entities
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Concurrent programming languages

Requirement
• Concept of tasks, threads or other potentially concurrent entities

Frequently requested essential elements
• Support for management or concurrent entities (create, terminate, …)

• Support for contention management (mutual exclusion, …)

• Support for synchronization (semaphores, monitors, …)

• Support for communication (message passing, shared memory, rpc, …)

• Support for protection (tasks, memory, devices, …)
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Concurrent programming languages

Language candidates
• Ada95, Chill, Erlang

• Occam, CSP

• Java, C#

• Modula-2

•

•

•

•
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Concurrent programming languages

Language candidates
• Ada95, Chill, Erlang

• Occam, CSP

• Java, C#

• Modula-2

• Lisp, Haskell, Caml, Miranda

• Smalltalk, Squeak

• Prolog

• Esterel, Signal
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Concurrent programming languages

Language candidates
• Ada95, Chill, Erlang

• Occam, CSP

• Java, C#

• Modula-2

• Lisp, Haskell, Caml, Miranda

• Smalltalk, Squeak

• Prolog

• Esterel, Signal

Without any support for concurrency: Eiffel, C, C++, Pascal, Fortran, Cobol, Basic…
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Concurrent programming languages

Language candidates
• Ada95, Chill, Erlang

• Occam, CSP

• Java, C#

• Modula-2

• Lisp, Haskell, Caml, Miranda

• Smalltalk, Squeak

• Prolog

• Esterel, Signal

Without any support for concurrency: Eiffel, C, C++, Pascal, Fortran, Cobol, Basic…

C-libraries & interfaces
• POSIX • MPI (message passing interface)
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Languages explicitly supporting concurrency: e.g. Ada95

Ada95 is a standardized (ISO/IEC 8652:1995(E)) ‘general purpose’ language 
with core language primitives for

• strong typing, separate compilation (specification and implementation),
object-orientation, 

• concurrency, monitors, rpcs, timeouts, scheduling, priority ceiling locks

• strong run-time environments

… and standardized language-annexes for

• additional real-time features, distributed programming, 
system-level programming, numeric, informations systems, 
safety and security issues.



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 123 of 896 (Chapter 1: to 135)

A protected queue specification

generic
   type Element is private;

package Queue_Pack_Protected_Generic is

   QueueSize : constant Integer := 10;
   type Queue_Type is limited private;

   protected type Protected_Queue is

      entry Enqueue (Item: in  Element);
      entry Dequeue (Item: out Element);

   private
      Queue : Queue_Type;

   end Protected_Queue;

private
   type Marker is mod QueueSize;
   type List is array (Marker'Range) of Element;
   type Queue_State is (Empty, Filled);
   type Queue_Type is record
      Top, Free : Marker      := Marker'First;
      State     : Queue_State := Empty;
      Elements  : List;
   end record;

end Queue_Pack_Protected_Generic;



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 124 of 896 (Chapter 1: to 135)

A protected queue implementation

package body Queue_Pack_Protected_Generic is

   protected body Protected_Queue is

      entry Enqueue (Item: in Element) when
        Queue.State = Empty or Queue.Top /= Queue.Free is
      begin
         Queue.Elements (Queue.Free) := Item;
         Queue.Free  := Queue.Free - 1;
         Queue.State := Filled;
      end Enqueue;

      entry Dequeue (Item: out Element) when
        Queue.State = Filled is
      begin
         Item      := Queue.Elements (Queue.Top);
         Queue.Top := Queue.Top - 1;
         if Queue.Top = Queue.Free then Queue.State := Empty; end if;
      end Dequeue;

   end Protected_Queue;
end Queue_Pack_Protected_Generic;
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A protected queue test task set

with Queue_Pack_Protected_Generic;
with Ada.Text_IO; use Ada.Text_IO;

procedure Queue_Test_Protected_Generic is

   package Queue_Pack_Protected_Character is
      new Queue_Pack_Protected_Generic (Element => Character);
   use Queue_Pack_Protected_Character;

   Queue : Protected_Queue;

   task Producer is entry shutdown; end Producer;
   task Consumer is                 end Consumer;

(…)

   … what’s left to do: implement the tasks ‘Producer’ and ‘Consumer’
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A protected queue test task set (producer)

(…)

   task body Producer is

      Item   : Character;
      Got_It : Boolean;

   begin
      loop
         select
            accept shutdown; exit; -- main task loop
         else
            Get_Immediate (Item, Got_It);
            if Got_It then
               Queue.Enqueue (Item); -- task might be blocked here!
            else
               delay 0.1; --sec.
            end if;
         end select;
      end loop;
   end Producer;

(…)
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A protected queue test task set (consumer)

(…)   

   task body Consumer is

      Item  : Character;

   begin
      loop
         Queue.Dequeue (Item); -- task might be blocked here!
         Put ("Received: "); Put (Item); Put_Line ("!");

         if Item = 'q' then
            Put_Line ("Shutting down producer"); Producer.Shutdown;
            Put_Line ("Shutting down consumer"); exit; -- main task loop
         end if;

      end loop;
   end Consumer;

begin
   null;
end Queue_Test_Protected_Generic;
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Ada95

Ada95 language status
• Established language standard with free and 

commercial compilers available for all major OSs.

• Stand-alone runtime environments for embedded systems 
(some are only available commercially).

• Special (yet non-standard) extensions (i.e. language reductions and
proof systems) for extreme small footprint embedded systems or high
integrity real-time environments available ☞ Ravenscar profile systems.

☞ has been used and is in use in numberless large scale projects 
(e.g. in the international space station, and in some spectacular crashes: e.g. Ariane 5)
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Concurrent programming languages

Language candidates

• Ada95, Chill, Erlang

• Occam, CSP

• Java, C#

• Modula-2

• Lisp, Haskell, Caml, Miranda

• Smalltalk, Squeak

• Prolog

• Esterel, Signal

Without any support for concurrency: Eiffel, C, C++, Pascal, Fortran, Cobol, Basic…

C-libraries & interfaces

• POSIX • MPI (message passing interface)
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Languages suggesting concurrency: e.g. functional programming

Implicit concurrency in some programming schemes
qsort []     = []
qsort (x:xs) = qsort [y | y <- xs, y < x] ++ [x] ++ qsort [y | y <- xs, y >= x]
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Languages suggesting concurrency: e.g. functional programming

Implicit concurrency in some programming schemes
qsort []     = []
qsort (x:xs) = qsort [y | y <- xs, y < x] ++ [x] ++ qsort [y | y <- xs, y >= x]

Strict functional programming is side-effect free

☞ Parameters can be evaluated independently ☞ concurrently
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Languages suggesting concurrency: e.g. functional programming

Implicit concurrency in some programming schemes
qsort []     = []
qsort (x:xs) = qsort [y | y <- xs, y < x] ++ [x] ++ qsort [y | y <- xs, y >= x]

Strict functional programming is side-effect free

☞ Parameters can be evaluated independently ☞ concurrently

Some functional languages allow for ‘lazy evaluation’, 
i.e. sub-expressions are not necessarily evaluated completely:

borderline = (n /= 0) && (g (n) > h (n))
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Languages suggesting concurrency: e.g. functional programming

Implicit concurrency in some programming schemes
qsort []     = []
qsort (x:xs) = qsort [y | y <- xs, y < x] ++ [x] ++ qsort [y | y <- xs, y >= x]

Strict functional programming is side-effect free

☞ Parameters can be evaluated independently ☞ concurrently

Some functional languages allow for ‘lazy evaluation’, 
i.e. sub-expressions are not necessarily evaluated completely:

borderline = (n /= 0) && (g (n) > h (n))

☞ if n equals zero the evaluation of g(n) and h(n) can be stopped (or not even be started)
☞ concurrent program parts need to be interruptible in this case
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Languages suggesting concurrency: e.g. functional programming

Implicit concurrency in some programming schemes
qsort []     = []
qsort (x:xs) = qsort [y | y <- xs, y < x] ++ [x] ++ qsort [y | y <- xs, y >= x]

Strict functional programming is side-effect free

☞ Parameters can be evaluated independently ☞ concurrently

Some functional languages allow for ‘lazy evaluation’, 
i.e. sub-expressions are not necessarily evaluated completely:

borderline = (n /= 0) && (g (n) > h (n))

☞ if n equals zero the evaluation of g(n) and h(n) can be stopped (or not even be started)
☞ concurrent program parts need to be interruptible in this case

(Lazy) sub-expression evaluations in imperative languages still assume sequential execution: 

if Pointer /= nil and then Pointer.next = nil then …
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Summary 

Concurrency – The Basic Concepts
• Forms of concurrency

• Models and terminology

• Abstractions and perspectives: computer science, physics & engineering
• Observations: non-determinism, atomicity, interaction, interleaving
• Correctness in concurrent systems

• Processes and threads

• Basic concepts and notions
• Process states

• First examples of concurrent programming languages:

• Explicit concurrency: Ada95
• Implicit concurrency: functional programming – Lisp, Haskell, Caml, Miranda
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Problem specification

The general mutual exclusion scenario
• N processes execute (infinite) instruction sequences concurrently.

Each instruction belongs to either a critical or non-critical section.



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 139 of 896 (Chapter 2: to 192)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Problem specification

The general mutual exclusion scenario
• N processes execute (infinite) instruction sequences concurrently.

Each instruction belongs to either a critical or non-critical section.

☞ Safety property ‘Mutual exclusion’: 

Instructions from critical sections of two or more processes 
must never be interleaved!
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Problem specification

The general mutual exclusion scenario
• N processes execute (infinite) instruction sequences concurrently.

Each instruction belongs to either a critical or non-critical section.

☞ Safety property ‘Mutual exclusion’: 

Instructions from critical sections of two or more processes 
must never be interleaved!

• More required properties:

• No deadlocks: If one or multiple processes try to enter their critical sections 
then exactly one of them must succeed.
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Problem specification

The general mutual exclusion scenario
• N processes execute (infinite) instruction sequences concurrently.

Each instruction belongs to either a critical or non-critical section.

☞ Safety property ‘Mutual exclusion’: 

Instructions from critical sections of two or more processes 
must never be interleaved!

• More required properties:

• No deadlocks: If one or multiple processes try to enter their critical sections 
then exactly one of them must succeed.

• No starvation: Every process which tries to enter one of his critical sections 
must succeed eventually.
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Problem specification

The general mutual exclusion scenario
• N processes execute (infinite) instruction sequences concurrently.

Each instruction belongs to either a critical or non-critical section.

☞ Safety property ‘Mutual exclusion’: 

Instructions from critical sections of two or more processes 
must never be interleaved!

• More required properties:

• No deadlocks: If one or multiple processes try to enter their critical sections 
then exactly one of them must succeed.

• No starvation: Every process which tries to enter one of his critical sections 
must succeed eventually.

• Efficiency: The decision which process may enter the critical section 
must be made efficiently in all cases, i.e. also when there is no contention.
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Problem specification

The general mutual exclusion scenario
• N processes execute (infinite) instruction sequences concurrently.

Each instruction belongs to either a critical or non-critical section.

☞ Safety property ‘Mutual exclusion’: 

Instructions from critical sections of two or more processes 
must never be interleaved!

• Further assumptions:

• Pre- and post-protocols can be executed before and after each critical section.
• Processes may delay infinitely in non-critical sections.
• Processes do not delay infinitely in critical sections.
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Mutual exclusion: Atomic load & store operations

Atomic load & store operations
☞ Assumption 1: every individual base memory cell (word) load and store access is atomic

☞ Assumption 2: there is no atomic combined load-store access
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Mutual exclusion: Atomic load & store operations

Atomic load & store operations
☞ Assumption 1: every individual base memory cell (word) load and store access is atomic

☞ Assumption 2: there is no atomic combined load-store access

G : Natural := 0; -- assumed to be mapped on a 1-word cell in memory

task body P1 is
begin
G := 1
G := G + G;

end P1;

task body P2 is
begin
G := 2
G := G + G;

end P2;

task body P3 is
begin
G := 3
G := G + G;

end P3;
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Mutual exclusion: Atomic load & store operations

Atomic load & store operations
☞ Assumption 1: every individual base memory cell (word) load and store access is atomic

☞ Assumption 2: there is no atomic combined load-store access

G : Natural := 0; -- assumed to be mapped on a 1-word cell in memory

task body P1 is
begin
G := 1
G := G + G;

end P1;

task body P2 is
begin
G := 2
G := G + G;

end P2;

task body P3 is
begin
G := 3
G := G + G;

end P3;

☞ After the first global initialisation, G can have many values between 0 and 24

☞ After the first global initialisation, G will have exactly one value between 0 and 24
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Mutual exclusion: first attempt

Turn: Positive range 1..2 := 1;

task body P1 is
begin
loop
-- non_critical_section_1;
loop exit when Turn = 1; end loop;

-- critical_section_1;
Turn := 2;

end loop;
end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
loop exit when Turn = 2; end loop;

-- critical_section_2;
Turn := 1;

end loop;
end P2;
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Mutual exclusion: first attempt

Turn: Positive range 1..2 := 1;

task body P1 is
begin
loop
-- non_critical_section_1;
loop exit when Turn = 1; end loop;

-- critical_section_1;
Turn := 2;

end loop;
end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
loop exit when Turn = 2; end loop;

-- critical_section_2;
Turn := 1;

end loop;
end P2;
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Mutual exclusion: first attempt

Turn: Positive range 1..2 := 1;

task body P1 is
begin
loop
-- non_critical_section_1;
loop exit when Turn = 1; end loop;

-- critical_section_1;
Turn := 2;

end loop;
end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
loop exit when Turn = 2; end loop;

-- critical_section_2;
Turn := 1;

end loop;
end P2;

☞ Mutual exclusion!

☞ No deadlock!

☞ No starvation!

☞ Locks up, if there is no contention!
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Mutual exclusion: second attempt

type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;

task body P1 is
begin
loop
-- non_critical_section_1;
loop 
exit when C2 = Out_CS;

end loop;
C1 := In_CS;

-- critical_section_1;
C1 := Out_CS;

end loop;
end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
loop 
exit when C1 = Out_CS; 

end loop;
C2 := In_CS;

-- critical_section_2;
C2 := Out_CS;

end loop;
end P2;
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Mutual exclusion: second attempt

type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;

task body P1 is
begin
loop
-- non_critical_section_1;
loop 
exit when C2 = Out_CS;

end loop;
C1 := In_CS;

-- critical_section_1;
C1 := Out_CS;

end loop;
end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
loop 
exit when C1 = Out_CS; 

end loop;
C2 := In_CS;

-- critical_section_2;
C2 := Out_CS;

end loop;
end P2;

☞ No mutual exclusion!
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Mutual exclusion: third attempt

type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;

task body P1 is
begin
loop
-- non_critical_section_1;
C1 := In_CS;
loop 
exit when C2 = Out_CS; 

end loop;
-- critical_section_1;

C1 := Out_CS;
end loop;

end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
C2 := In_CS;
loop 
exit when C1 = Out_CS; 

end loop;
-- critical_section_2;

C2 := Out_CS;
end loop;

end P2;
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Mutual exclusion: third attempt

type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;

task body P1 is
begin
loop
-- non_critical_section_1;
C1 := In_CS;
loop 
exit when C2 = Out_CS; 

end loop;
-- critical_section_1;

C1 := Out_CS;
end loop;

end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
C2 := In_CS;
loop 
exit when C1 = Out_CS; 

end loop;
-- critical_section_2;

C2 := Out_CS;
end loop;

end P2;

☞ Mutual exclusion!
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Mutual exclusion: third attempt

type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;

task body P1 is
begin
loop
-- non_critical_section_1;
C1 := In_CS;
loop 
exit when C2 = Out_CS; 

end loop;
-- critical_section_1;

C1 := Out_CS;
end loop;

end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
C2 := In_CS;
loop 
exit when C1 = Out_CS; 

end loop;
-- critical_section_2;

C2 := Out_CS;
end loop;

end P2;

☞ Mutual exclusion!

☞ Deadlock possible!
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Mutual exclusion: fourth attempt

type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;

task body P1 is
begin
loop
-- non_critical_section_1;
C1 := In_CS;
loop 
exit when C2 = Out_CS; 
C1 := Out_CS;
C1 := In_CS;

end loop;
-- critical_section_1;

C1 := Out_CS;
end loop;

end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
C2 := In_CS;
loop 
exit when C1 = Out_CS; 
C2 := Out_CS;
C2 := In_CS;

end loop;
-- critical_section_2;

C2 := Out_CS;
end loop;

end P2;
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Mutual exclusion: fourth attempt

type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;

task body P1 is
begin
loop
-- non_critical_section_1;
C1 := In_CS;
loop 
exit when C2 = Out_CS; 
C1 := Out_CS;
C1 := In_CS;

end loop;
-- critical_section_1;

C1 := Out_CS;
end loop;

end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
C2 := In_CS;
loop 
exit when C1 = Out_CS; 
C2 := Out_CS;
C2 := In_CS;

end loop;
-- critical_section_2;

C2 := Out_CS;
end loop;

end P2;

☞ Mutual exclusion!, No deadlock!
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Mutual exclusion: fourth attempt
type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;

task body P1 is
begin
loop
-- non_critical_section_1;
C1 := In_CS;
loop 
exit when C2 = Out_CS; 
C1 := Out_CS;
C1 := In_CS;

end loop;
-- critical_section_1;

C1 := Out_CS;
end loop;

end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
C2 := In_CS;
loop 
exit when C1 = Out_CS; 
C2 := Out_CS;
C2 := In_CS;

end loop;
-- critical_section_2;

C2 := Out_CS;
end loop;

end P2;

☞ Mutual exclusion!, No deadlock!

☞ Individual starvation & global livelock possible!



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 158 of 896 (Chapter 2: to 192)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Mutual exclusion: Decker’s Algorithm

type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;  Turn : Positive range 1..2 := 1;

task body P1 is
begin
loop
-- non_critical_section_1;
C1 := In_CS;
loop 
exit when C2 = Out_CS;
if Turn = 2 then
C1 := Out_CS;
loop exit when Turn = 1;
end loop;
C1 := In_CS;

end if;
end loop;

-- critical_section_1;
C1 := Out_CS; Turn := 2;

end loop;
end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
C2 := In_CS;
loop 
exit when C1 = Out_CS;
if Turn = 1 then
C2 := Out_CS;
loop exit when Turn = 2;
end loop;
C2 := In_CS;

end if;
end loop;

-- critical_section_2;
C2 := Out_CS; Turn := 1;

end loop;
end P2;
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Mutual exclusion: Decker’s Algorithm

type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;  Turn : Positive range 1..2 := 1;

task body P1 is
begin
loop
-- non_critical_section_1;
C1 := In_CS;
loop 
exit when C2 = Out_CS;
if Turn = 2 then
C1 := Out_CS;
loop exit when Turn = 1;
end loop;
C1 := In_CS;

end if;
end loop;

-- critical_section_1;
C1 := Out_CS; Turn := 2;

end loop;
end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
C2 := In_CS;
loop 
exit when C1 = Out_CS;
if Turn = 1 then
C2 := Out_CS;
loop exit when Turn = 2;
end loop;
C2 := In_CS;

end if;
end loop;

-- critical_section_2;
C2 := Out_CS; Turn := 1;

end loop;
end P2;

☞ Mutual exclusion!

☞ No deadlock!

☞ No starvation!

☞ No livelock!
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Mutual exclusion: Peterson’s Algorithm

type Critical_Section_State is (In_CS, Out_CS);
C1, C2 : Critical_Section_State := Out_CS;
Last   : Positive range 1..2    := 1;

task body P1 is
begin
loop
-- non_critical_section_1;
C1   := In_CS;
Last := 1;
loop 
exit when C2 = Out_CS 

or else Last /= 1;
end loop;

-- critical_section_1;
C1 := Out_CS;

end loop;
end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
C2   := In_CS;
Last := 2;
loop 
exit when C1 = Out_CS 

or else Last /= 2;
end loop;

-- critical_section_2;
C2 := Out_CS;

end loop;
end P2;



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 161 of 896 (Chapter 2: to 192)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Mutual exclusion: Peterson’s Algorithm

type Critical_Section_State is (In_CS, Out_CS);
C1, C2 : Critical_Section_State := Out_CS;
Last   : Positive range 1..2    := 1;

task body P1 is
begin
loop
-- non_critical_section_1;
C1   := In_CS;
Last := 1;
loop 
exit when C2 = Out_CS 

or else Last /= 1;
end loop;

-- critical_section_1;
C1 := Out_CS;

end loop;
end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
C2   := In_CS;
Last := 2;
loop 
exit when C1 = Out_CS 

or else Last /= 2;
end loop;

-- critical_section_2;
C2 := Out_CS;

end loop;
end P2;

☞ Mutual exclusion!

☞ No deadlock!

☞ No starvation!

☞ No livelock!

… and it’s simpler



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 162 of 896 (Chapter 2: to 192)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Problem specification

The general mutual exclusion scenario
• N processes execute (infinite) instruction sequences concurrently.

Each instruction belongs to either a critical or non-critical section.

☞ Safety property ‘Mutual exclusion’: 

Instructions from critical sections of two or more processes 
must never be interleaved!

• More required properties:

• No deadlocks: If one or multiple processes try to enter their critical sections 
then exactly one of them must succeed.

• No starvation: Every process which tries to enter one of his critical sections 
must succeed eventually.

• Efficiency: The decision which process may enter the critical section 
must be made efficiently in all cases, i.e. also when there is no contention.
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Mutual exclusion: Bakery Algorithm

The idea of the Bakery Algorithm
A set of  Processes  competing for mutually exclusive execution of their critical regions.

Every process  out of  supplies: a globally readable number  (‘ticket’) (initialized to ‘0’).

N P1…PN
Pi P1…PN ti
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Mutual exclusion: Bakery Algorithm

The idea of the Bakery Algorithm
A set of  Processes  competing for mutually exclusive execution of their critical regions.

Every process  out of  supplies: a globally readable number  (‘ticket’) (initialized to ‘0’).

• Before a process  enters a critical section:

•  draws a new number 
•  is allowed to enter the critical section iff: :  or 

N P1…PN
Pi P1…PN ti

Pi

Pi ti tj> j i≠∀;
Pi j i≠∀ ti tj< tj 0=
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Mutual exclusion: Bakery Algorithm

The idea of the Bakery Algorithm
A set of  Processes  competing for mutually exclusive execution of their critical regions.

Every process  out of  supplies: a globally readable number  (‘ticket’) (initialized to ‘0’).

• Before a process  enters a critical section:

•  draws a new number 
•  is allowed to enter the critical section iff: :  or 

• After a process  left a critical section:

•  resets its 

N P1…PN
Pi P1…PN ti

Pi

Pi ti tj> j i≠∀;
Pi j i≠∀ ti tj< tj 0=

Pi

Pi ti 0=



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 166 of 896 (Chapter 2: to 192)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Mutual exclusion: Bakery Algorithm

The idea of the Bakery Algorithm
A set of  Processes  competing for mutually exclusive execution of their critical regions.

Every process  out of  supplies: a globally readable number  (‘ticket’) (initialized to ‘0’).

• Before a process  enters a critical section:

•  draws a new number 
•  is allowed to enter the critical section iff: :  or 

• After a process  left a critical section:

•  resets its 

Issues:

☞ Can you ensure that processes won’t read each others ticket numbers while still calculating?

N P1…PN
Pi P1…PN ti

Pi

Pi ti tj> j i≠∀;
Pi j i≠∀ ti tj< tj 0=

Pi

Pi ti 0=
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Mutual exclusion: Bakery Algorithm

The idea of the Bakery Algorithm
A set of  Processes  competing for mutually exclusive execution of their critical regions.

Every process  out of  supplies: a globally readable number  (‘ticket’) (initialized to ‘0’).

• Before a process  enters a critical section:

•  draws a new number 
•  is allowed to enter the critical section iff: :  or 

• After a process  left a critical section:

•  resets its 

Issues:

☞ Can you ensure that processes won’t read each others ticket numbers while still calculating?

☞ Can you ensure that no two processes draw the same number?

N P1…PN
Pi P1…PN ti

Pi

Pi ti tj> j i≠∀;
Pi j i≠∀ ti tj< tj 0=

Pi

Pi ti 0=
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Mutual exclusion: Bakery Algorithm
type Choosing_State is (Yes, No);
Choosing: array (1..N) of Choosing_State := (others => No);
Number  : array (1..N) of Natural        := (others => 0);

task type P (I: Natural) is end P;

task body P is
begin
loop
-- non_critical_section_1;
Choosing (I) := Yes;
Number   (I) := Max (Number) + 1;
Choosing (I) := No;

for J in 1..N loop
if J /= I then
loop 
exit when Choosing (J) = No;

end loop;
loop
exit when
Number (J) = 0 or
Number (I) < Number (J) or
(Number (I) = Number (J) 
and I < J);

end loop;
end if;

end loop;
-- critical_section_1;
Number (I) := 0;

end loop;
end P;
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Mutual exclusion: Bakery Algorithm
type Choosing_State is (Yes, No);
Choosing: array (1..N) of Choosing_State := (others => No);
Number  : array (1..N) of Natural        := (others => 0);

task type P (I: Natural) is end P;

task body P is
begin
loop
-- non_critical_section_1;
Choosing (I) := Yes;
Number   (I) := Max (Number) + 1;
Choosing (I) := No;

for J in 1..N loop
if J /= I then
loop 
exit when Choosing (J) = No;

end loop;
loop
exit when
Number (J) = 0 or
Number (I) < Number (J) or
(Number (I) = Number (J) 
and I < J);

end loop;
end if;

end loop;
-- critical_section_1;
Number (I) := 0;

end loop;
end P;

☞ Solves the 
mutual exclusion 
problem for N processes!
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Mutual exclusion: Bakery Algorithm
type Choosing_State is (Yes, No);
Choosing: array (1..N) of Choosing_State := (others => No);
Number  : array (1..N) of Natural        := (others => 0);

task type P (I: Natural) is end P;

task body P is
begin
loop
-- non_critical_section_1;
Choosing (I) := Yes;
Number   (I) := Max (Number) + 1;
Choosing (I) := No;

for J in 1..N loop
if J /= I then
loop 
exit when Choosing (J) = No;

end loop;
loop
exit when
Number (J) = 0 or
Number (I) < Number (J) or
(Number (I) = Number (J) 
and I < J);

end loop;
end if;

end loop;
-- critical_section_1;
Number (I) := 0;

end loop;
end P;

☞ Intensive communication 
with all processes, even if just 
one process tries to enter!
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Beyond atomic memory access

Realistic hardware support
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Beyond atomic memory access

Realistic hardware support
Atomic test-and-set operations [Motorola 68xxx; Intel 80x86]: 

• [L := C; C := 1]
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Beyond atomic memory access

Realistic hardware support
Atomic test-and-set operations [Motorola 68xxx; Intel 80x86]: 

• [L := C; C := 1]

Atomic exchange operations [Motorola 68xxx; Intel 80x86]: 
• [Temp := L; L := C; C := Temp]
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Beyond atomic memory access

Realistic hardware support
Atomic test-and-set operations [Motorola 68xxx; Intel 80x86]: 

• [L := C; C := 1]

Atomic exchange operations [Motorola 68xxx; Intel 80x86]: 
• [Temp := L; L := C; C := Temp]

Memory cell reservations [Motorola PowerPC]:
• L := C; – by using a special instruction, which puts a ‘reservation’ on C

• … calculate a <new value> for C … 

• C := <new value>; 
– succeeds iff C was not manipulated by other processors or devices since the reservation
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Mutual exclusion: atomic test-and-set operation
type Flag is Natural range 0..1;  C : Flag := 0;

task body Pi is

L : Flag;

begin
loop
-- non_critical_section_i;
loop 
[L := C; C := 1]
exit when L = 0; 

end loop;
-- critical_section_i;

C := 0;
end loop;

end Pi;

task body Pj is

L : Flag;

begin
loop
-- non_critical_section_j;
loop 
[L := C; C := 1]
exit when L = 0; 

end loop;
-- critical_section_j;

C := 0;
end loop;

end Pj;

☞

☞
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Mutual exclusion: atomic test-and-set operation
type Flag is Natural range 0..1;  C : Flag := 0;

task body Pi is

L : Flag;

begin
loop
-- non_critical_section_i;
loop 
[L := C; C := 1]
exit when L = 0; 

end loop;
-- critical_section_i;

C := 0;
end loop;

end Pi;

task body Pj is

L : Flag;

begin
loop
-- non_critical_section_j;
loop 
[L := C; C := 1]
exit when L = 0; 

end loop;
-- critical_section_j;

C := 0;
end loop;

end Pj;

☞ Mutual exclusion!, No deadlock!, No global live-lock! – for N processes

☞ Individual starvation possible!
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Mutual exclusion: atomic exchange operation
type Flag is Natural range 0..1;  C : Flag := 0;

task body Pi is

L : Flag := 1;

begin
loop
-- non_critical_section_i;
loop 
[Temp := L; L := C; C := Temp];
exit when L = 0; 

end loop;
-- critical_section_i;

[Temp := L; L := C; C := Temp];
end loop;

end Pi;

task body Pj is

L : Flag := 1;

begin
loop
-- non_critical_section_j;
loop 
[Temp := L; L := C; C := Temp];
exit when L = 0; 

end loop;
-- critical_section_j;

[Temp := L; L := C; C := Temp];
end loop;

end Pj;

☞

☞
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Mutual exclusion: atomic exchange operation
type Flag is Natural range 0..1;  C : Flag := 0;

task body Pi is

L : Flag := 1;

begin
loop
-- non_critical_section_i;
loop 
[Temp := L; L := C; C := Temp];
exit when L = 0; 

end loop;
-- critical_section_i;

[Temp := L; L := C; C := Temp];
end loop;

end Pi;

task body Pj is

L : Flag := 1;

begin
loop
-- non_critical_section_j;
loop 
[Temp := L; L := C; C := Temp];
exit when L = 0; 

end loop;
-- critical_section_j;

[Temp := L; L := C; C := Temp];
end loop;

end Pj;

☞ Mutual exclusion!, No deadlock!, No global live-lock! – for N processes

☞ Individual starvation possible!
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Mutual exclusion: memory cell reservation
type Flag is Natural range 0..1;  C : Flag := 0;

task body Pi is

L : Flag;

begin
loop
-- non_critical_section_i;
loop 
L := C; -- reservation on C
C := 1; -- works if untouched
exit when Untouched and L = 0; 

end loop;
-- critical_section_i;

C := 0;
end loop;

end Pi;

task body Pj is

L : Flag;

begin
loop
-- non_critical_section_j;
loop 
L := C; -- reservation on C
C := 1; -- works if untouched
exit when Untouched and L = 0; 

end loop;
-- critical_section_j;

C := 0;
end loop;

end Pj;

☞

☞
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Mutual exclusion: memory cell reservation
type Flag is Natural range 0..1;  C : Flag := 0;

task body Pi is

L : Flag;

begin
loop
-- non_critical_section_i;
loop 
L := C; -- reservation on C
C := 1; -- works if untouched
exit when Untouched and L = 0; 

end loop;
-- critical_section_i;

C := 0;
end loop;

end Pi;

task body Pj is

L : Flag;

begin
loop
-- non_critical_section_j;
loop 
L := C; -- reservation on C
C := 1; -- works if untouched
exit when Untouched and L = 0; 

end loop;
-- critical_section_j;

C := 0;
end loop;

end Pj;

☞ Mutual exclusion!, No deadlock!, No global live-lock! – for N processes

☞ Individual starvation possible!
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Synchronization

Semaphores
Basic definition (Dijkstra 1968)

Assuming further that there is a shared memory between two processes:

• a set of processes agree on a variable S operating 
as a flag to indicate synchronization conditions … and …
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Synchronization

Semaphores
Basic definition (Dijkstra 1968)

Assuming further that there is a shared memory between two processes:

• a set of processes agree on a variable S operating 
as a flag to indicate synchronization conditions … and …

• an atomic operation P on S — P stands for ‘passeren’ (Dutch for ‘pass’):

• P(S): [if S > 0 then S := S - 1]

• an atomic operation V on S — V stands for ‘vrygeven’ (Dutch for ‘to release’):

• V(S): [S := S + 1]



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 183 of 896 (Chapter 2: to 192)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Semaphores
Basic definition (Dijkstra 1968)

Assuming further that there is a shared memory between two processes:

• a set of processes agree on a variable S operating 
as a flag to indicate synchronization conditions … and …

• an atomic operation P on S — P stands for ‘passeren’ (Dutch for ‘pass’):

• P(S): [if S > 0 then S := S - 1]

• an atomic operation V on S — V stands for ‘vrygeven’ (Dutch for ‘to release’):

• V(S): [S := S + 1]

☞ the variable S is then called a semaphore.
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Synchronization

Semaphores
… as supplied by operating systems

• a set of processes P(1) … P(N) agree on a variable S operating 
as a flag to indicate synchronization conditions … and …

• an atomic operation Wait on S: — also: , ‘Suspend_Until_True’, ‘sem_wait’

• Process P(i): Wait (S): 
[if S > 0 

then S := S - 1 
else “suspend P(i) on S”]

• an atomic operation Signal on S: — also: ‘Set_True’, ‘sem_post’

• Process P(i): Signal (S): 
[if : “P(j) is suspended on S” 

then “release P(j)”
else S := S + 1]

j∃
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Synchronization

Semaphores
… as supplied by operating systems

• a set of processes P(1) … P(N) agree on a variable S operating 
as a flag to indicate synchronization conditions … and …

• an atomic operation Wait on S: — also: , ‘Suspend_Until_True’, ‘sem_wait’

• Process P(i): Wait (S): 
[if S > 0 

then S := S - 1 
else “suspend P(i) on S”]

• an atomic operation Signal on S: — also: ‘Set_True’, ‘sem_post’

• Process P(i): Signal (S): 
[if : “P(j) is suspended on S” 

then “release P(j)”
else S := S + 1]

j∃ a release order is not specified!
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Synchronization

Semaphores

Types of semaphores:
• General semaphores (counting semaphores): non-negative number; (range limited by the system)
P and V increment and decrement the semaphore by one.

• Binary semaphores: restricted to [0, 1]; Multiple V (Signal) calls have the same effect than 1 call.

• binary semaphores are sufficient to create all other semaphore forms.
• atomic ‘test-and-set’ operations support binary semaphores at hardware level.

• Quantity semaphores: The increment (and decrement) value for the semaphore is specified as a
parameter with P and V.
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Synchronization

Semaphores

Types of semaphores:
• General semaphores (counting semaphores): non-negative number; (range limited by the system)
P and V increment and decrement the semaphore by one.

• Binary semaphores: restricted to [0, 1]; Multiple V (Signal) calls have the same effect than 1 call.

• binary semaphores are sufficient to create all other semaphore forms.
• atomic ‘test-and-set’ operations support binary semaphores at hardware level.

• Quantity semaphores: The increment (and decrement) value for the semaphore is specified as a
parameter with P and V.

☞ all types of semaphores must be initialized with a non-negative number: 
often the number of processes which are allowed inside a critical section, i.e. “1”.
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Mutual exclusion: Semaphores

S : Semaphore := 1;

task body Pi is

begin
loop
-- non_critical_section_i;
wait (S);

-- critical_section_i;
signal (S);

end loop;
end Pi;

task body Pj is

begin
loop
-- non_critical_section_j;
wait (S);

-- critical_section_j;
signal (S);

end loop;
end Pj;

☞

☞
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Mutual exclusion: Semaphores

S : Semaphore := 1;

task body Pi is

begin
loop
-- non_critical_section_i;
wait (S);

-- critical_section_i;
signal (S);

end loop;
end Pi;

task body Pj is

begin
loop
-- non_critical_section_j;
wait (S);

-- critical_section_j;
signal (S);

end loop;
end Pj;

☞ Mutual exclusion!, No deadlock!, No global live-lock! – for N processes

☞ Individual starvation possible!
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Mutual exclusion: Semaphores

S1, S2: Semaphore := 1;

task body Pi is

begin
loop
-- non_critical_section_i;
wait (S1);
wait (S2);

-- critical_section_i;
signal (S2);
signal (S1);

end loop;
end Pi;

task body Pj is

begin
loop
-- non_critical_section_j;
wait (S2);
wait (S1);

-- critical_section_j;
signal (S1);
signal (S2);

end loop;
end Pj;
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Mutual exclusion: Semaphores

S1, S2: Semaphore := 1;

task body Pi is

begin
loop
-- non_critical_section_i;
wait (S1);
wait (S2);

-- critical_section_i;
signal (S2);
signal (S1);

end loop;
end Pi;

task body Pj is

begin
loop
-- non_critical_section_j;
wait (S2);
wait (S1);

-- critical_section_j;
signal (S1);
signal (S2);

end loop;
end Pj;

☞ Mutual exclusion!, No global live-lock!

☞ Individual starvation possible!

☞ Possible deadlock!
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Summary 

Mutual Exclusion
• Definition of mutual exclusion

• Atomic load and atomic store operations

• … some classical errors
• Decker’s algorithm, Peterson’s algorithm
• Bakery algorithm

• Realistic hardware support

• Atomic test-and-set, Atomic exchanges, Memory cell reservations

• Semaphores

• Basic semaphore definition
• Operating systems style semaphores
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Synchronization

Synchronization methods
• Shared memory based synchronization

• Semaphores ☞ ‘C’, POSIX — Dijkstra
• Conditional critical regions ☞ Edison (experimental)
• Monitors ☞ Modula-1, Mesa — Dijkstra, Hoare, …
• Mutexes & conditional variables ☞ POSIX
• Synchronized methods ☞ Java
• Protected objects ☞ Ada95
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Synchronization

Synchronization methods
• Shared memory based synchronization

• Semaphores ☞ ‘C’, POSIX — Dijkstra
• Conditional critical regions ☞ Edison (experimental)
• Monitors ☞ Modula-1, Mesa — Dijkstra, Hoare, …
• Mutexes & conditional variables ☞ POSIX
• Synchronized methods ☞ Java
• Protected objects ☞ Ada95

• Message based synchronization

• Asynchronous messages ☞ e.g. POSIX, …
• Synchronous messages ☞ e.g. Ada95, CHILL, Occam2
• Remote invocation, remote procedure call ☞ e.g. Ada95, …
• Synchronization in distributed systems ☞ e.g. CORBA, …
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Synchronization

Synchronization in concurrent systems

All data is declared …

☞ … either local (and protected by language-, os-, or hardware-mechanisms)

☞ … or it is ‘out in the open’ and all access need to be synchronized!
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Synchronization

Synchronization in concurrent systems
Synchronization: the run-time overhead?
☞ Is the potential overhead justified for simple data-structures:

                                  int i;

                                    ……

         i++;           |        if i>n {i=0;} 

{in one thread}    {in another thread}



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 199 of 896 (Chapter 3: to 380)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization in concurrent systems
Synchronization: the run-time overhead?
☞ Is the potential overhead justified for simple data-structures:

                                  int i;

                                    ……

         i++;           |        if i>n {i=0;} 

{in one thread}    {in another thread}

• Are those operations atomic?

• Do we really need to introduce full featured synchronization methods here?
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Synchronization

Synchronization in concurrent systems
                                  int i;

                                    ……

         i++;           |        if i>n {i=0;} 

• Depending on the hardware and the compiler, it might be atomic, it might be not:
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Synchronization

Synchronization in concurrent systems
                                  int i;

                                    ……

         i++;           |        if i>n {i=0;} 

• Depending on the hardware and the compiler, it might be atomic, it might be not:

☞ Handling a 64-bit integer on a 8- or 16-bit controller will not be atomic
… but perhaps it is an 8-bit integer.
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Synchronization

Synchronization in concurrent systems
                                  int i;

                                    ……

         i++;           |        if i>n {i=0;} 

• Depending on the hardware and the compiler, it might be atomic, it might be not:

☞ Handling a 64-bit integer on a 8- or 16-bit controller will not be atomic
… but perhaps it is an 8-bit integer.

☞ Any manipulations on the main memory will usually not be atomic 
… but perhaps it is a register.
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Synchronization

Synchronization in concurrent systems
                                  int i;

                                    ……

         i++;           |        if i>n {i=0;} 

• Depending on the hardware and the compiler, it might be atomic, it might be not:

☞ Handling a 64-bit integer on a 8- or 16-bit controller will not be atomic
… but perhaps it is an 8-bit integer.

☞ Any manipulations on the main memory will usually not be atomic 
… but perhaps it is a register.

☞ Broken down to a load-operate-store cycle, the operations will usually not be atomic
… but perhaps the processor supplies atomic operations for the actual case.
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Synchronization

Synchronization in concurrent systems
                                  int i;

                                    ……

         i++;           |        if i>n {i=0;} 

• Depending on the hardware and the compiler, it might be atomic, it might be not:

☞ Handling a 64-bit integer on a 8- or 16-bit controller will not be atomic
… but perhaps it is an 8-bit integer.

☞ Any manipulations on the main memory will usually not be atomic 
… but perhaps it is a register.

☞ Broken down to a load-operate-store cycle, the operations will usually not be atomic
… but perhaps the processor supplies atomic operations for the actual case.

☞ Assuming that all ‘perhapses’ apply: how to expand this code?
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Synchronization

Synchronization in concurrent systems
                                  int i;

                                    ……

         i++;           |        if i>n {i=0;} 

☞ Unfortunately: the chances that such programming errors turn out are usually small and some
implicit by chance synchronization in the rest of the system might prevent them at all.

• Many effects stemming from asynchronous memory accesses are interpreted as (hardware)
‘glitches’, since they are usually rare but then often disastrous. 

• On assembler level: synchronization by employing knowledge about the atomicity of 
CPU-operations and interrupt structures is nevertheless possible and done frequently.
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Synchronization

Synchronization in concurrent systems
                                  int i;

                                    ……

         i++;           |        if i>n {i=0;} 

☞ Unfortunately: the chances that such programming errors turn out are usually small and some
implicit by chance synchronization in the rest of the system might prevent them at all.

• Many effects stemming from asynchronous memory accesses are interpreted as (hardware)
‘glitches’, since they are usually rare but then often disastrous. 

• On assembler level: synchronization by employing knowledge about the atomicity of 
CPU-operations and interrupt structures is nevertheless possible and done frequently.

In anything higher than assembler level on small, predictable µcontrollers:

☞ Measures for synchronization are required!
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Synchronization

Synchronization by flags
Word-access atomicity:

Assuming that any access to a word in the system is an atomic operation:

e.g. assigning two values (not wider than the size of word) to a memory cell simultaneously:

Task 1:    x := 0;       |       Task 2:    x := 5;

will result in either x = 0 xor x = 5 — and no other value is ever observable.
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Synchronization

Synchronization by flags
Assuming further that there is a shared memory area between two processes:

• A set of processes agree on a (word-size) atomic variable operating 
as a flag to indicate synchronization conditions.
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Synchronization

Condition synchronization by flags

var Flag : boolean := false;

process P1;
   statement X;

   repeat until Flag;

   statement Y;
end P1;

process P2;
   statement A;

   Flag := true;

   statement B;
end P2;

Sequence of operations: [A | X] ➠ [B | Y]
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Synchronization

Synchronization by flags
Assuming further that there is a shared memory between two processes:

• A set of processes agree on a (word-size) atomic variable operating 
as a flag to indicate synchronization conditions:

Memory flag method is ok for simple condition synchronization, but …

☞ … is not suitable for general mutual exclusion in critical sections!

☞ … busy-waiting is required to poll the synchronization condition!
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Synchronization

Synchronization by flags
Assuming further that there is a shared memory between two processes:

• A set of processes agree on a (word-size) atomic variable operating 
as a flag to indicate synchronization conditions:

Memory flag method is ok for simple condition synchronization, but …

☞ … is not suitable for general mutual exclusion in critical sections!

☞ … busy-waiting is required to poll the synchronization condition!

☞ More powerful synchronization operations 
are required for critical sections
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Synchronization

Synchronization by semaphores
(Dijkstra 1968)

Assuming further that there is a shared memory between two processes:

• a set of processes agree on a variable S operating 
as a flag to indicate synchronization conditions … and …

• an atomic operation P on S — P stands for ‘passeren’ (Dutch for ‘pass’):

• P: [if S > 0 then S := S - 1] also: ‘Wait’, ‘Suspend_Until_True’

• an atomic operation V on S — V stands for ‘vrygeven’ (Dutch for ‘to release’):

• V: [S := S + 1] also: ‘Signal’, ‘Set_True’

☞ the variable S is then called a semaphore.

OS-level: P is usually also suspending the current task until S > 0.
CPU-level: P indicates whether it was successful, but the operation is not blocking.
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Synchronization

Condition synchronization by semaphores

var sync : semaphore := 0;

process P1;
   statement X;

   wait (sync);

   statement Y;
end P1;

process P2;
   statement A;

   signal (sync);

   statement B;
end P2;
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Synchronization

Condition synchronization by semaphores

var sync : semaphore := 0;

process P1;
   statement X;

   wait (sync);

   statement Y;
end P1;

process P2;
   statement A;

   signal (sync);

   statement B;
end P2;

Sequence of operations: [A | X] ➠ [B | Y]
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Mutual exclusion by semaphores

var mutex : semaphore := 1;

process P1;
   statement X;

   wait (mutex);
      statement Y;
   signal (mutex);

   statement Z;
end P1;

process P2;
   statement A;

   wait (mutex);
      statement B;
   signal (mutex);

   statement C;
end P2;
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Mutual exclusion by semaphores

var mutex : semaphore := 1;

process P1;
   statement X;

   wait (mutex);
      statement Y;
   signal (mutex);

   statement Z;
end P1;

process P2;
   statement A;

   wait (mutex);
      statement B;
   signal (mutex);

   statement C;
end P2;

Sequence of operations: [A | X] ➠ [B ➠ Y xor Y ➠ B] ➠ [C | Z]
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Semaphores in Ada95
package Ada.Synchronous_Task_Control is

   type Suspension_Object is limited private;

   procedure Set_True  (S : in out Suspension_Object);
   procedure Set_False (S : in out Suspension_Object);

   function Current_State (S : Suspension_Object) return Boolean;

   procedure Suspend_Until_True (S : in out Suspension_Object);

private
   … -- not specified by the language
end Ada.Synchronous_Task_Control;
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Semaphores in Ada95
package Ada.Synchronous_Task_Control is

   type Suspension_Object is limited private;

   procedure Set_True  (S : in out Suspension_Object);
   procedure Set_False (S : in out Suspension_Object);

   function Current_State (S : Suspension_Object) return Boolean;

   procedure Suspend_Until_True (S : in out Suspension_Object);

private
   … -- not specified by the language
end Ada.Synchronous_Task_Control;

• only one task can be blocked at Suspend_Until_True! (‘strict version of a binary semaphore’)
(Program_Error will be raised with the second task trying to suspend itself)

☞ no queues! ☞ minimal run-time overhead
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Semaphores in Ada95
package Ada.Synchronous_Task_Control is

   type Suspension_Object is limited private;

   procedure Set_True  (S : in out Suspension_Object);
   procedure Set_False (S : in out Suspension_Object);

   function Current_State (S : Suspension_Object) return Boolean;

   procedure Suspend_Until_True (S : in out Suspension_Object);

private
   … -- not specified by the language
end Ada.Synchronous_Task_Control;

• only one task can be blocked at Suspend_Until_True! (strict version of a binary semaphore)
(Program_Error will be raised with the second task trying to suspend itself)

☞ no queues ☞ minimal run-time overhead

for v
ery sp

ecial cases o
nly, 

in general:

medieval
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Semaphores in POSIX

int sem_init      (sem_t *sem_location, int pshared, unsigned int value);
int sem_destroy   (sem_t *sem_location);

int sem_wait      (sem_t *sem_location);
int sem_trywait   (sem_t *sem_location);
int sem_timedwait (sem_t *sem_location, const struct timespec *abstime);

int sem_post      (sem_t *sem_location);

int sem_getvalue  (sem_t *sem_location, int *value);
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Semaphores in POSIX

int sem_init      (sem_t *sem_location, int pshared, unsigned int value);
int sem_destroy   (sem_t *sem_location);

int sem_wait      (sem_t *sem_location);
int sem_trywait   (sem_t *sem_location);
int sem_timedwait (sem_t *sem_location, const struct timespec *abstime);

int sem_post      (sem_t *sem_location);

int sem_getvalue  (sem_t *sem_location, int *value);

generate semaphore for usage between processes
(otherwise for threads of the same process only)
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Semaphores in POSIX

int sem_init      (sem_t *sem_location, int pshared, unsigned int value);
int sem_destroy   (sem_t *sem_location);

int sem_wait      (sem_t *sem_location);
int sem_trywait   (sem_t *sem_location);
int sem_timedwait (sem_t *sem_location, const struct timespec *abstime);

int sem_post      (sem_t *sem_location);

int sem_getvalue  (sem_t *sem_location, int *value);

delivers the number of waiting processes as a negative integer, 
if there are processes waiting on this semaphore
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Semaphores in POSIX
void allocate (priority_t P)
{
   sem_wait (&mutex);
   if (busy) {
      sem_post (&mutex);
      sem_wait (&cond[P]);
   }
   busy = 1;
   sem_post (&mutex);
}

—————
sem_t mutex, cond[2];
typedef emun {low, high} priority_t;
int waiting
int busy

void deallocate (priority_t P)
{
   sem_wait (&mutex);
   busy = 0;
   sem_getvalue (&cond[high], 
                 &waiting);
   if (waiting < 0) {
      sem_post (&cond[high]);
   }
   else {
      sem_getvalue (&cond[low], 
                    &waiting);
      if (waiting < 0) {
         sem_post (&cond[low]);
      }
      else {
         sem_post (&mutex);
}  }  }
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Semaphores in POSIX
void allocate (priority_t P)
{
   sem_wait (&mutex);
   if (busy) {
      sem_post (&mutex);
      sem_wait (&cond[P]);
   }
   busy = 1;
   sem_post (&mutex);
}

—————
sem_t mutex, cond[2];
typedef emun {low, high} priority_t;
int waiting
int busy

void deallocate (priority_t P)
{
   sem_wait (&mutex);
   busy = 0;
   sem_getvalue (&cond[high], 
                 &waiting);
   if (waiting < 0) {
      sem_post (&cond[high]);
   }
   else {
      sem_getvalue (&cond[low], 
                    &waiting);
      if (waiting < 0) {
         sem_post (&cond[low]);
      }
      else {
         sem_post (&mutex);
}  }  }

correct?
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Deadlock by semaphores
with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;

X, Y : Suspension_Object;

task B;

task body B is

begin
   …

   Suspend_Until_True (Y);
   Suspend_Until_True (X);
   …
end B;

task A;

task body A is

begin
   …

   Suspend_Until_True (X);
   Suspend_Until_True (Y);
   …
end A;
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Deadlock by semaphores
with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;

X, Y : Suspension_Object;

task B;

task body B is

begin
   …

   Suspend_Until_True (Y);
   Suspend_Until_True (X);
   …
end B;

task A;

task body A is

begin
   …

   Suspend_Until_True (X);
   Suspend_Until_True (Y);
   …
end A;

☞ could raise a Program_Error in Ada95.

☞ produces a potential deadlock when implemented with general semaphores.

☞ Deadlocks can be generated by all kinds of synchronization methods.
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Criticism of semaphores

• Semaphores are not bound to any resource or method or region
☞ Adding or deleting a single semaphore operation some place might stall the whole system
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Synchronization

Criticism of semaphores

• Semaphores are not bound to any resource or method or region
☞ Adding or deleting a single semaphore operation some place might stall the whole system

• Semaphores are scattered all over the code 
☞ hard to read, error-prone
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Criticism of semaphores

• Semaphores are not bound to any resource or method or region
☞ Adding or deleting a single semaphore operation some place might stall the whole system

• Semaphores are scattered all over the code 
☞ hard to read, error-prone

☞ Semaphores are considered inadequate for non-trivial systems.

(all concurrent languages and environments offer efficient higher-level synchronization methods).
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Conditional critical regions

Basic idea:
• Critical regions are a set of code sections in different processes,

which are guaranteed to be executed in mutual exclusion:

• Shared data structures are grouped in named regions 
and are tagged as being private resources.

• Processes are prohibited from entering a critical region, 
when another process is active in any associated critical region.
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Conditional critical regions

Basic idea:
• Critical regions are a set of code sections in different processes,

which are guaranteed to be executed in mutual exclusion:

• Shared data structures are grouped in named regions 
and are tagged as being private resources.

• Processes are prohibited from entering a critical region, 
when another process is active in any associated critical region.

• Condition synchronisation is provided by guards:

• When a process wishes to enter a critical region it evaluates the guard (under mutual
exclusion). If the guard evaluates false, the process is suspended / delayed.
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Conditional critical regions

Basic idea:
• Critical regions are a set of code sections in different processes,

which are guaranteed to be executed in mutual exclusion:

• Shared data structures are grouped in named regions 
and are tagged as being private resources.

• Processes are prohibited from entering a critical region, 
when another process is active in any associated critical region.

• Condition synchronisation is provided by guards:

• When a process wishes to enter a critical region it evaluates the guard (under mutual
exclusion). If the guard evaluates false, the process is suspended / delayed.

• As with semaphores, no access order can be assumed.
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Conditional critical regions
buffer : buffer_t;

resource critial_buffer_region : buffer;

process producer;

   loop

      region critial_buffer_region
         when buffer.size < N do

            -- place in buffer etc.

      end region

   end loop;
end producer

process consumer;

   loop

      region critial_buffer_region 
         when buffer.size > 0 do

            -- take from buffer etc.

      end region

   end loop;
end consumer
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Criticism of conditional critical regions
• All guards need to be re-evaluated, 

when any conditional critical region is left:

☞ all involved processes are activated to test their guards
☞ there is no order in the re-evaluation phase ☞ potential livelocks
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Criticism of conditional critical regions
• All guards need to be re-evaluated, 

when any conditional critical region is left:

☞ all involved processes are activated to test their guards
☞ there is no order in the re-evaluation phase ☞ potential livelocks

• As with semaphores the conditional critical regions 
are scattered all over the code.

☞ on a larger scale: same problems as with semaphores.

The language Edison uses conditional critical regions
for synchronization in a multiprocessor environment
(each process is associated with exactly one processor).
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Monitors
(Modula-1, Mesa — Dijkstra, Hoare)

Basic idea:
• Collect all operations and data-structures shared in critical regions in one place, the monitor.
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Monitors
(Modula-1, Mesa — Dijkstra, Hoare)

Basic idea:
• Collect all operations and data-structures shared in critical regions in one place, the monitor.

• Formulate all operations as procedures or functions.
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Monitors
(Modula-1, Mesa — Dijkstra, Hoare)

Basic idea:
• Collect all operations and data-structures shared in critical regions in one place, the monitor.

• Formulate all operations as procedures or functions.

• Prohibit access to data-structures, other than by the monitor-procedures and functions.
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Monitors
(Modula-1, Mesa — Dijkstra, Hoare)

Basic idea:
• Collect all operations and data-structures shared in critical regions in one place, the monitor.

• Formulate all operations as procedures or functions.

• Prohibit access to data-structures, other than by the monitor-procedures and functions.

• Assure mutual exclusion of all monitor-procedures and functions.
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Monitors
monitor buffer;

   export append, take;

   var (* declare protected vars *)

   procedure append (I : integer);
      …

   procedure take (var I : integer);
      …

begin
   (* initialisation *)
end;
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Monitors
monitor buffer;

   export append, take;

   var (* declare protected vars *)

   procedure append (I : integer);
      …

   procedure take (var I : integer);
      …

begin
   (* initialisation *)
end; How to realize conditional synchronization?
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Monitors with condition synchronization
(Hoare)

Hoare-monitors:

• Condition variables are implemented by semaphores (Wait and Signal).

• Queues for tasks suspended on condition variables are realized.

• A suspended task releases its lock on the monitor, enabling another task to enter.
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Monitors with condition synchronization
(Hoare)

Hoare-monitors:

• Condition variables are implemented by semaphores (Wait and Signal).

• Queues for tasks suspended on condition variables are realized.

• A suspended task releases its lock on the monitor, enabling another task to enter.

☞ More efficient evaluation of the guards: 
the task leaving the monitor can evaluate all guards and the right tasks can be activated.

☞ Blocked tasks may be ordered and livelocks prevented.
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Monitors with condition synchronization
monitor buffer;
   export append, take;
   var BUF                       : array [ … ] of integer;
   top, base                     : 0..size-1; 
   NumberInBuffer                : integer;
   spaceavailable, itemavailable : condition;

   procedure append (I : integer);
      begin
         if NumberInBuffer = size then

            wait (spaceavailable);

         end if;
         BUF[top] := I; NumberInBuffer := NumberInBuffer+1;
         top := (top+1) mod size;

         signal (itemavailable)

      end append;   …
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Monitors with condition synchronization 
… 
   procedure take (var I : integer);
      begin
         if NumberInBuffer = 0 then

            wait (itemavailable);

         end if;
         I := BUF[base];
         base := (base+1) mod size;
         NumberInBuffer := NumberInBuffer-1;

         signal (spaceavailable);

      end take;

begin (* initialisation *)
   NumberInBuffer := 0;
   top := 0; base := 0
end;



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 246 of 896 (Chapter 3: to 380)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors with condition synchronization 
… 
   procedure take (var I : integer);
      begin
         if NumberInBuffer = 0 then

            wait (itemavailable);

         end if;
         I := BUF[base];
         base := (base+1) mod size;
         NumberInBuffer := NumberInBuffer-1;

         signal (spaceavailable);

      end take;

begin (* initialisation *)
   NumberInBuffer := 0;
   top := 0; base := 0
end;

The signalling and the 
waiting process are both 

active in the monitor!
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Monitors with condition synchronization

Suggestions to overcome the multiple-tasks-in-monitor-problem:

• A signal is allowed only as the last action of a process before it leaves the monitor.
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Monitors with condition synchronization

Suggestions to overcome the multiple-tasks-in-monitor-problem:

• A signal is allowed only as the last action of a process before it leaves the monitor.

• A signal operation has the side-effect of executing a return statement.
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Monitors with condition synchronization

Suggestions to overcome the multiple-tasks-in-monitor-problem:

• A signal is allowed only as the last action of a process before it leaves the monitor.

• A signal operation has the side-effect of executing a return statement.

• Hoare, Modula-1, POSIX: a signal operation which unblocks another process 
has the side-effect of blocking the current process; 
this process will only execute again once the monitor is unlocked again.
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Monitors with condition synchronization

Suggestions to overcome the multiple-tasks-in-monitor-problem:

• A signal is allowed only as the last action of a process before it leaves the monitor.

• A signal operation has the side-effect of executing a return statement.

• Hoare, Modula-1, POSIX: a signal operation which unblocks another process 
has the side-effect of blocking the current process; 
this process will only execute again once the monitor is unlocked again.

• A signal operation which unblocks a process does not block the caller, 
but the unblocked process must gain access to the monitor again.
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Monitors in Modula-1

• wait (s, r): 
delays the caller until condition variable s is true (r is the rank (or ‘priority’) of the caller).

• send (s):
If a process is waiting for the condition variable s, 
then the process at the top of the queue of the highest filled rank is activated 
(and the caller suspended). 

• awaited (s):
check for waiting processes on s. 
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Monitors in Modula-1
INTERFACE MODULE resource_control;

   DEFINE allocate, deallocate;
   VAR busy : BOOLEAN; free : SIGNAL;

   PROCEDURE allocate;
   BEGIN
      IF busy THEN WAIT (free) END;
      busy := TRUE;
   END;

   PROCEDURE deallocate;
   BEGIN
      busy := FALSE;
      SEND (free); -- or: IF AWAITED (free) THEN SEND (free);
   END;

BEGIN
   busy := false;
END.
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Monitors in ‘C’ / POSIX
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init      (      pthread_mutex_t     *mutex,
                             const pthread_mutexattr_t *attr);
int pthread_mutex_destroy   (      pthread_mutex_t     *mutex);

int pthread_cond_init       (      pthread_cond_t      *cond,
                             const pthread_condattr_t  *attr);
int pthread_cond_destroy    (      pthread_cond_t      *cond);

…
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Monitors in ‘C’ / POSIX
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init      (      pthread_mutex_t     *mutex,
                             const pthread_mutexattr_t *attr);
int pthread_mutex_destroy   (      pthread_mutex_t     *mutex);

int pthread_cond_init       (      pthread_cond_t      *cond,
                             const pthread_condattr_t  *attr);
int pthread_cond_destroy    (      pthread_cond_t      *cond);

…

Attributes include:

• semantics for trying to lock a mutex which
is locked already by the same thread

• sharing of mutexes and 
condition variables between processes

• priority ceiling

• clock used for timeouts

• … … …
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Monitors in ‘C’ / POSIX
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init      (      pthread_mutex_t     *mutex,
                             const pthread_mutexattr_t *attr);
int pthread_mutex_destroy   (      pthread_mutex_t     *mutex);

int pthread_cond_init       (      pthread_cond_t      *cond,
                             const pthread_condattr_t  *attr);
int pthread_cond_destroy    (      pthread_cond_t      *cond);

…

Undefined, if locked

Undefined, if threads are waiting
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Monitors in ‘C’ / POSIX
(operators)

…

int pthread_mutex_lock      (      pthread_mutex_t     *mutex);
int pthread_mutex_trylock   (      pthread_mutex_t     *mutex);
int pthread_mutex_timedlock (      pthread_mutex_t     *mutex,
                             const struct timespec     *abstime);
int pthread_mutex_unlock    (      pthread_mutex_t     *mutex);

int pthread_cond_wait       (      pthread_cond_t      *cond,
                                   pthread_mutex_t     *mutex);
int pthread_cond_timedwait  (      pthread_cond_t      *cond,
                                   pthread_mutex_t     *mutex, 
                             const struct timespec     *abstime);

int pthread_cond_signal     (      pthread_cond_t      *cond);
int pthread_cond_broadcast  (      pthread_cond_t      *cond);
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Monitors in ‘C’ / POSIX
(operators)

…

int pthread_mutex_lock      (      pthread_mutex_t     *mutex);
int pthread_mutex_trylock   (      pthread_mutex_t     *mutex);
int pthread_mutex_timedlock (      pthread_mutex_t     *mutex,
                             const struct timespec     *abstime);
int pthread_mutex_unlock    (      pthread_mutex_t     *mutex);

int pthread_cond_wait       (      pthread_cond_t      *cond,
                                   pthread_mutex_t     *mutex);
int pthread_cond_timedwait  (      pthread_cond_t      *cond,
                                   pthread_mutex_t     *mutex, 
                             const struct timespec     *abstime);

int pthread_cond_signal     (      pthread_cond_t      *cond);
int pthread_cond_broadcast  (      pthread_cond_t      *cond);

unblocking ‘at least one’ thread

unblocking all threads



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 258 of 896 (Chapter 3: to 380)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in ‘C’ / POSIX
(operators)

…

int pthread_mutex_lock      (      pthread_mutex_t     *mutex);
int pthread_mutex_trylock   (      pthread_mutex_t     *mutex);
int pthread_mutex_timedlock (      pthread_mutex_t     *mutex,
                             const struct timespec     *abstime);
int pthread_mutex_unlock    (      pthread_mutex_t     *mutex);

int pthread_cond_wait       (      pthread_cond_t      *cond,
                                   pthread_mutex_t     *mutex);
int pthread_cond_timedwait  (      pthread_cond_t      *cond,
                                   pthread_mutex_t     *mutex, 
                             const struct timespec     *abstime);

int pthread_cond_signal     (      pthread_cond_t      *cond);
int pthread_cond_broadcast  (      pthread_cond_t      *cond);

undefined, 

if called out of order!
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Synchronization

Monitors in ‘C’ / POSIX
(operators)

…

int pthread_mutex_lock      (      pthread_mutex_t     *mutex);
int pthread_mutex_trylock   (      pthread_mutex_t     *mutex);
int pthread_mutex_timedlock (      pthread_mutex_t     *mutex,
                             const struct timespec     *abstime);
int pthread_mutex_unlock    (      pthread_mutex_t     *mutex);

int pthread_cond_wait       (      pthread_cond_t      *cond,
                                   pthread_mutex_t     *mutex);
int pthread_cond_timedwait  (      pthread_cond_t      *cond,
                                   pthread_mutex_t     *mutex, 
                             const struct timespec     *abstime);

int pthread_cond_signal     (      pthread_cond_t      *cond);
int pthread_cond_broadcast  (      pthread_cond_t      *cond);

can be called any time, anywhere
(multiple lock reaction can be specified)
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Monitors in ‘C’ / POSIX
(example, definitions)

#define BUFF_SIZE 10

typedef struct {
   pthread_mutex_t mutex;
   pthread_cond_t  buffer_not_full;
   pthread_cond_t  buffer_not_empty;
   int             count, first, last;
   int             buf[BUFF_SIZE];
} buffer;
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Monitors in ‘C’ / POSIX
(example, operations)

int append (int item, buffer *B) {

   PTHREAD_MUTEX_LOCK (&B->mutex);
   while (B->count == BUFF_SIZE) {
      PTHREAD_COND_WAIT (
         &B->buffer_not_full, 
         &B->mutex); 
   }
   PTHREAD_MUTEX_UNLOCK (&B->mutex);
   PTHREAD_COND_SIGNAL (
      &B->buffer_not_empty);
   return 0;
}

int take (int *item, buffer *B) {

   PTHREAD_MUTEX_LOCK (&B->mutex);
   while (B->count == 0) {
      PTHREAD_COND_WAIT (
         &B->buffer_not_empty, 
         &B->mutex);
   }
   PTHREAD_MUTEX_UNLOCK (&B->mutex);
   PTHREAD_COND_SIGNAL (
      &B->buffer_not_full);
   return 0;
}
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Synchronization

Monitors in ‘C’ / POSIX
(example, operations)

int append (int item, buffer *B) {

   PTHREAD_MUTEX_LOCK (&B->mutex);
   while (B->count == BUFF_SIZE) {
      PTHREAD_COND_WAIT (
         &B->buffer_not_full, 
         &B->mutex); 
   }
   PTHREAD_MUTEX_UNLOCK (&B->mutex);
   PTHREAD_COND_SIGNAL (
      &B->buffer_not_empty);
   return 0;
}

int take (int *item, buffer *B) {

   PTHREAD_MUTEX_LOCK (&B->mutex);
   while (B->count == 0) {
      PTHREAD_COND_WAIT (
         &B->buffer_not_empty, 
         &B->mutex);
   }
   PTHREAD_MUTEX_UNLOCK (&B->mutex);
   PTHREAD_COND_SIGNAL (
      &B->buffer_not_full);
   return 0;
}

correct?
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Monitors in Java
Java provides two mechanisms to construct monitors:

• Synchronized methods and code blocks
all methods and code blocks which are using the synchronized tag 
are mutually exclusive with respect to the addressed class.
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Synchronization

Monitors in Java
Java provides two mechanisms to construct monitors:

• Synchronized methods and code blocks
all methods and code blocks which are using the synchronized tag 
are mutually exclusive with respect to the addressed class.

• Notification methods: wait, notify, and notifyAll
can be used only in synchronized regions and are waking any or all threads, 
which are waiting in the same synchronized object.
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Monitors in Java
Considerations:

1. Synchronized methods and code blocks:
• In order to implement a monitor all methods in an object need to be synchronized.

☞ any other standard method can break the monitor and enter at any time.
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Synchronization

Monitors in Java
Considerations:

1. Synchronized methods and code blocks:
• In order to implement a monitor all methods in an object need to be synchronized.

☞ any other standard method can break the monitor and enter at any time.

• Methods outside the monitor-object can synchronize at this object.

☞ it is impossible to analyse a monitor locally, since lock accesses can exist all over the system.
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Synchronization

Monitors in Java
Considerations:

1. Synchronized methods and code blocks:
• In order to implement a monitor all methods in an object need to be synchronized.

☞ any other standard method can break the monitor and enter at any time.

• Methods outside the monitor-object can synchronize at this object.

☞ it is impossible to analyse a monitor locally, since lock accesses can exist all over the system.

• Static data is shared between all objects of a class.

☞ access to static data need to be synchronized with all objects of a class.

Either in static synchronized blocks: synchronized (this.getClass()) {…} 
or in static methods: public synchronized static <method> {…}
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Synchronization

Monitors in Java
Considerations:

2. Notification methods: wait, notify, and notifyAll

• wait suspends the thread and releases the local lock only

☞ nested wait-calls will keep all enclosing locks.
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Synchronization

Monitors in Java
Considerations:

2. Notification methods: wait, notify, and notifyAll

• wait suspends the thread and releases the local lock only

☞ nested wait-calls will keep all enclosing locks.

• notify and notifyAll do not release the lock. 

☞ methods, which are activated via notification need to wait for lock-access.
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Synchronization

Monitors in Java
Considerations:

2. Notification methods: wait, notify, and notifyAll

• wait suspends the thread and releases the local lock only

☞ nested wait-calls will keep all enclosing locks.

• notify and notifyAll do not release the lock. 

☞ methods, which are activated via notification need to wait for lock-access.

• Java does not require any specific release order (like a queue) for wait-suspended threads

☞ livelocks are not prevented at this level (in opposition to RT-Java).
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Synchronization

Monitors in Java
Considerations:

2. Notification methods: wait, notify, and notifyAll

• wait suspends the thread and releases the local lock only

☞ nested wait-calls will keep all enclosing locks.

• notify and notifyAll do not release the lock. 

☞ methods, which are activated via notification need to wait for lock-access.

• Java does not require any specific release order (like a queue) for wait-suspended threads

☞ livelocks are not prevented at this level (in opposition to RT-Java).

• There are no explicit conditional variables.

☞ notified threads need to wait for the lock to be released and to re-evaluate its entry condition
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Monitors in Java
(multiple-readers-one-writer-example)

each of the readers uses these monitor.calls:

startRead ();
   // read the shared data only
stopRead ();

each of the writers uses these monitor.calls:

startWrite ();
   // manipulate the shared data
stopWrite ();

☞ construct a monitor, which allows 
multiple readers 

or 
one writer 

at a time inside the critical regions
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Monitors in Java
(multiple-readers-one-writer-example: wait-notifyAll method)

public class ReadersWriters

{

   private int     readers        = 0;
   private int     waitingWriters = 0;
   private boolean writing        = false;
   
…
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Synchronization

Monitors in Java
(multiple-readers-one-writer-example: wait-notifyAll method)

…  public synchronized void StartWrite () throws InterruptedException
   {
      while (readers > 0 || writing)
      {
         waitingWriters++; 
         wait(); 
         waitingWriters--;
      }
      writing = true;
   }

   public synchronized void StopWrite()
   {
      writing = false;
      notifyAll ();
   } …
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Synchronization

Monitors in Java
(multiple-readers-one-writer-example: wait-notifyAll method)

…  public synchronized void StartRead () throws InterruptedException
   {
      while (writing || waitingWriters > 0) 
      {
         wait();
      }
      readers++;
   }

   public synchronized void StopRead()
   {
      readers--;
      if (readers == 0) notifyAll();
   }
}



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 276 of 896 (Chapter 3: to 380)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in Java
(multiple-readers-one-writer-example: wait-notifyAll method)

…  public synchronized void StartRead () throws InterruptedException
   {
      while (writing || waitingWriters > 0) 
      {
         wait();
      }
      readers++;
   }

   public synchronized void StopRead()
   {
      readers--;
      if (readers == 0) notifyAll();
   }
}

whenever a synchronized region is left:

• all threads are notified

• all threads are 
re-evaluating their guards



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 277 of 896 (Chapter 3: to 380)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in Java
Standard monitor solution:

• declare the monitored data-structures private to the monitor object (non-static).
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Synchronization

Monitors in Java
Standard monitor solution:

• declare the monitored data-structures private to the monitor object (non-static).

• introduce a class ConditionVariable:

     public class ConditionVariable {
        public boolean wantToSleep = false;
     }

• introduce synchronization-scopes in monitor-methods: 
☞ synchronize on the adequate conditional variables first and 
☞ synchronize on the monitor-object second.



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 279 of 896 (Chapter 3: to 380)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in Java
Standard monitor solution:

• declare the monitored data-structures private to the monitor object (non-static).

• introduce a class ConditionVariable:

     public class ConditionVariable {
        public boolean wantToSleep = false;
     }

• introduce synchronization-scopes in monitor-methods: 
☞ synchronize on the adequate conditional variables first and 
☞ synchronize on the monitor-object second.

• make sure that all methods in the monitor are implementing the correct synchronizations.

• make sure that no other method in the whole system is synchronizing on this monitor-object.
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Synchronization

Monitors in Java
(multiple-readers-one-writer-example: usage of external conditional variables)

public class ReadersWriters
{

   private int     readers        = 0;
   private int     waitingReaders = 0;
   private int     waitingWriters = 0;
   private boolean writing        = false;

   ConditionVariable OkToRead  = new ConditionVariable ();
   ConditionVariable OkToWrite = new ConditionVariable ();

…
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Monitors in Java
…  public void StartWrite () throws InterruptedException
   {
      synchronized (OkToWrite) 
      {
         synchronized (this) 
         {
            if (writing | readers > 0) {
               waitingWriters++;
               OkToWrite.wantToSleep = true;
            } else {
               writing = true;
               OkToWrite.wantToSleep = false;
            }
         } 
         if (OkToWrite.wantToSleep) OkToWrite.wait ();
   }  } …
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Monitors in Java
…  public void StopWrite ()
   {
      synchronized (OkToRead)
      {
         synchronized (OkToWrite)
         {
            synchronized (this)
            {
               if (waitingWriters > 0) {
                  waitingWriters--;
                  OkToWrite.notify (); // wakeup one writer
               } else {
                  writing = false;
                  OkToRead.notifyAll (); // wakeup all readers
                  readers = waitingReaders;
                  waitingReaders = 0;
               }
   }  }  }  } …
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Monitors in Java
…  public void StartRead () throws InterruptedException
   {
      synchronized (OkToRead) 
      {
         synchronized (this)
         {
            if (writing | waitingWriters > 0) {
               waitingReaders++;
               OkToRead.wantToSleep = true;
            } else {
               readers++;
               OkToRead.wantToSleep = false;
            }
         }
         if (OkToRead.wantToSleep) OkToRead.wait ();
   }  } …
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Monitors in Java
…  public void StopRead ()
   {
      synchronized (OkToWrite)
      {
         synchronized (this)
         {
            readers--;
            if (readers == 0 & waitingWriters > 0) {
               waitingWriters--;
               OkToWrite.notify ();
            }
         }
      }
   }
}
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Object-orientation and synchronization

Since mutual exclusion, notification, and condition synchronization schemes need to be designed 
and analysed considering the implementation of all involved methods and guards:

☞ new methods cannot be added without re-evaluating the whole class!
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Synchronization

Object-orientation and synchronization

Since mutual exclusion, notification, and condition synchronization schemes need to be designed 
and analysed considering the implementation of all involved methods and guards:

☞ new methods cannot be added without re-evaluating the whole class!

In opposition to the general re-usage idea of object-oriented programming, 
the re-usage of synchronized classes (e.g. monitors) need to be considered carefully.

☞ The parent class might need to be adapted in order to suit the global synchronization scheme.

☞ Inheritance anomaly (Matsuoka & Yonezawa ‘93)
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Synchronization

Object-orientation and synchronization

Since mutual exclusion, notification, and condition synchronization schemes need to be designed 
and analysed considering the implementation of all involved methods and guards:

☞ new methods cannot be added without re-evaluating the whole class!

In opposition to the general re-usage idea of object-oriented programming, 
the re-usage of synchronized classes (e.g. monitors) need to be considered carefully.

☞ The parent class might need to be adapted in order to suit the global synchronization scheme.

☞ Inheritance anomaly (Matsuoka & Yonezawa ‘93)

Methods to design and analyse expandible synchronized systems exist, 
but are fairly complex and are not provided in any current object-oriented language.
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Monitors in POSIX & Real-time Java

☞ flexible and universal,
but relies on conventions rather than compilers

POSIX offers conditional variables

Real-time Java is more supportive than POSIX 
in terms of data-encapsulation

Extreme care must be taken when employing 
object-oriented programming and monitors



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 289 of 896 (Chapter 3: to 380)

Real-Time & Embedded SystemsConcurrent & Distributed Systems
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Nested monitor calls
Assuming a thread in a monitor is calling an operation in another monitor 
and is suspended at a conditional variable there:
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Synchronization

Nested monitor calls
Assuming a thread in a monitor is calling an operation in another monitor 
and is suspended at a conditional variable there:

☞ the called monitor is aware of the suspension and allows other threads to enter.
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Synchronization

Nested monitor calls
Assuming a thread in a monitor is calling an operation in another monitor 
and is suspended at a conditional variable there:

☞ the called monitor is aware of the suspension and allows other threads to enter.

☞ the calling monitor is possibly not aware of the suspension and keeps its lock!
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Synchronization

Nested monitor calls
Assuming a thread in a monitor is calling an operation in another monitor 
and is suspended at a conditional variable there:

☞ the called monitor is aware of the suspension and allows other threads to enter.

☞ the calling monitor is possibly not aware of the suspension and keeps its lock!

☞ the unjustified locked calling monitor 
reduces the system performance and leads to potential deadlocks.



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 293 of 896 (Chapter 3: to 380)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Nested monitor calls
Assuming a thread in a monitor is calling an operation in another monitor 
and is suspended at a conditional variable there:

☞ the called monitor is aware of the suspension and allows other threads to enter.

☞ the calling monitor is possibly not aware of the suspension and keeps its lock!

☞ the unjustified locked calling monitor 
reduces the system performance and leads to potential deadlocks.

Suggestions to solve this situation:

• Maintain the lock anyway: e.g. POSIX, Java

• Prohibit nested procedure calls: e.g. Modula-1

• Provide constructs which specify the release of a monitor lock for remote calls, e.g. Ada95
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Criticism of monitors

• Mutual exclusion is solved elegantly and safely.
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Synchronization

Criticism of monitors

• Mutual exclusion is solved elegantly and safely.

• Conditional synchronization is on the level of semaphores still
☞ all criticism on semaphores apply
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Synchronization

Criticism of monitors

• Mutual exclusion is solved elegantly and safely.

• Conditional synchronization is on the level of semaphores still
☞ all criticism on semaphores apply

☞ mixture of low-level and high-level synchronization constructs.
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Synchronization by protected objects
Combine 

• the encapsulation feature of monitors 

with 

• the coordinated entries of conditional critical regions
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Synchronization

Synchronization by protected objects
Combine 

• the encapsulation feature of monitors 

with 

• the coordinated entries of conditional critical regions

to 

☞ Protected objects

• all controlled data and operations are encapsulated
• all operations are mutual exclusive
• entry guards are attached to operations
• the protected interface allows for operations on data
• no protected data is accessible (other than by defined operations)
• tasks are queued (according to their priorities)
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Synchronization by protected objects in Ada95
(simultaneous read-access)

Some read-only operations do not need to be mutual exclusive:

protected type Shared_Data (Initial : Data_Item) is

   function  Read return Data_Item;
   procedure Write (New_Value : in Data_Item);

private
   The_Data : Data_Item := Initial;
end Shared_Data_Item;



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 300 of 896 (Chapter 3: to 380)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization by protected objects in Ada95
(simultaneous read-access)

Some read-only operations do not need to be mutual exclusive:

protected type Shared_Data (Initial : Data_Item) is

   function  Read return Data_Item;
   procedure Write (New_Value : in Data_Item);

private
   The_Data : Data_Item := Initial;
end Shared_Data_Item;

• protected functions can have ‘in’ parameters only and are not allowed to alter the private data
(enforced by the compiler).

☞ protected functions allow simultaneous access (but mutual exclusive with other operations).

• there is no defined priority between functions and other protected operations in Ada95.
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Synchronization by protected objects in Ada95
Condition synchronization is realized in the form of protected procedures 
combined with boolean conditional variables (barriers): ☞ entries in Ada95:

Buffer_Size : constant Integer := 10;

type    Index    is mod Buffer_Size;
subtype Count    is Natural range 0 .. Buffer_Size;
type    Buffer_T is array (Index) of Data_Item;

protected type Bounded_Buffer is

   entry Get (Item : out Data_Item);
   entry Put (Item : in Data_Item);
private
   First  : Index := Index'First;
   Last   : Index := Index'Last;
   Num    : Count := 0;
   Buffer : Buffer_T;

end Bounded_Buffer;
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Synchronization by protected objects in Ada95
(barriers)

protected body Bounded_Buffer is

   entry Get (Item : out Data_Item) when Num > 0 is
      begin
         Item  := Buffer (First);
         First := First + 1;
         Num   := Num - 1;
      end Get;

   entry Put (Item : in Data_Item) when Num < Buffer_Size is
      begin
         Last          := Last + 1;
         Buffer (Last) := Item;
         Num           := Num + 1;
      end Put;

end Bounded_Buffer;



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 303 of 896 (Chapter 3: to 380)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization by protected objects in Ada95
Protected entries are used like task entries:

Buffer : Bounded_Buffer;

select
   Buffer.Put (Some_Data); 
or 
   delay 10.0; 
      -- do something after 10 s.
end select;
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Synchronization

Synchronization by protected objects in Ada95
Protected entries are used like task entries:

Buffer : Bounded_Buffer;

select
   Buffer.Put (Some_Data); 
or 
   delay 10.0; 
      -- do something after 10 s.
end select;

select
   Buffer.Get (Some_Data);
else
   -- do something else
end select;
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Synchronization

Synchronization by protected objects in Ada95
Protected entries are used like task entries:

Buffer : Bounded_Buffer;

select
   Buffer.Put (Some_Data); 
or 
   delay 10.0; 
      -- do something after 10 s.
end select;

select
   Buffer.Get (Some_Data);
else
   -- do something else
end select;

select
   delay 10.0;
then abort
   Buffer.Put (Some_Data); 
      -- try to enter for 10 s.
end select;
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Synchronization

Synchronization by protected objects in Ada95
Protected entries are used like task entries:

Buffer : Bounded_Buffer;

select
   Buffer.Put (Some_Data); 
or 
   delay 10.0; 
      -- do something after 10 s.
end select;

select
   Buffer.Get (Some_Data);
else
   -- do something else
end select;

select
   delay 10.0;
then abort
   Buffer.Put (Some_Data); 
      -- try to enter for 10 s.
end select;

select
   Buffer.Get (Some_Data);
then abort
   -- meanwhile try something else
end select;
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Synchronization by protected objects in Ada95
(barrier evaluation)

Barrier evaluations and task activations:

• on calling a protected entry, the associated barrier is evaluated 
(only those parts of the barrier which might have changed since the last evaluation).

• on leaving a protected procedure or entry, related barriers with tasks queued are evaluated
(only those parts of the barriers which might have been altered by this procedure / entry 
or which might have changed since the last evaluation).

Barriers are not evaluated while inside a protected object or on leaving a protected function.
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Synchronization

Synchronization by protected objects in Ada95
(operations on entry queues)

The count attribute indicates the number of tasks waiting at a specific queue:

protected Blocker is

   entry Proceed;

private
   Release : Boolean := False;
end Blocker;

protected body Blocker is

   entry Proceed 
      when Proceed’count = 5 
        or Release is
   begin
      Release := Proceed’count > 0;
   end Proceed;

end Blocker;
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Synchronization

Synchronization by protected objects in Ada95
(operations on entry queues)

The count attribute indicates the number of tasks waiting at a specific queue:

protected type Broadcast is

   entry Receive  (M: out Message);
   procedure Send (M: in  Message);

private

   New_Message : Message;
   Arrived     : Boolean := False;

end Broadcast;

protected body Broadcast is

    
      
    
       
       
    

    
   
       
       
    

end Broadcast;
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Synchronization

Synchronization by protected objects in Ada95
(operations on entry queues)

The count attribute indicates the number of tasks waiting at a specific queue:

protected type Broadcast is

   entry Receive  (M: out Message);
   procedure Send (M: in  Message);

private

   New_Message : Message;
   Arrived     : Boolean := False;

end Broadcast;

protected body Broadcast is

   entry Receive (M: out Message)
      when Arrived is
   begin
      M := New_Message
      Arrived := Receive’count > 0;
   end Proceed;

    
   
       
       
    

end Broadcast;
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Synchronization

Synchronization by protected objects in Ada95
(operations on entry queues)

The count attribute indicates the number of tasks waiting at a specific queue:

protected type Broadcast is

   entry Receive  (M: out Message);
   procedure Send (M: in  Message);

private

   New_Message : Message;
   Arrived     : Boolean := False;

end Broadcast;

protected body Broadcast is

   entry Receive (M: out Message)
      when Arrived is
   begin
      M := New_Message
      Arrived := Receive’count > 0;
   end Proceed;

   procedure Send (M: in  Message) is
   begin
      New_Message := M;
      Arrived := Receive’count > 0;
   end Send;

end Broadcast;



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 312 of 896 (Chapter 3: to 380)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization by protected objects in Ada95
(entry families, requeue & private entries)

Further refinements on task control by:

• Entry families: 
a protected entry declaration can contain a discrete subtype selector, which can be evaluated 
by the barrier (other parameters cannot be evaluated by barriers) and implements an 
array of protected entries.
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Synchronization

Synchronization by protected objects in Ada95
(entry families, requeue & private entries)

Further refinements on task control by:

• Entry families: 
a protected entry declaration can contain a discrete subtype selector, which can be evaluated 
by the barrier (other parameters cannot be evaluated by barriers) and implements an 
array of protected entries.

• Requeue facility: 
protected operations can use ‘requeue’ to redirect tasks to other internal, external, or private
entries. The current protected operation is finished and the lock on the object is released.

‘Internal progress first’-rule: internally requeued tasks are placed at the head of the waiting queue!
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Synchronization

Synchronization by protected objects in Ada95
(entry families, requeue & private entries)

Further refinements on task control by:

• Entry families: 
a protected entry declaration can contain a discrete subtype selector, which can be evaluated 
by the barrier (other parameters cannot be evaluated by barriers) and implements an 
array of protected entries.

• Requeue facility: 
protected operations can use ‘requeue’ to redirect tasks to other internal, external, or private
entries. The current protected operation is finished and the lock on the object is released.

‘Internal progress first’-rule: internally requeued tasks are placed at the head of the waiting queue!

• Private entries: 
protected entries which are not accessible from outside the protected object, 
but can be employed as destinations for requeue operations.
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Synchronization

Synchronization by protected objects in Ada95
(entry families)

package Modes is

   type Mode_T is 
      (Takeoff, Ascent, Cruising,
       Descent, Landing);

   protected Mode_Gate is

      procedure Set_Mode
                  (Mode: in Mode_T);
      entry Wait_For_Mode 
                  (Mode_T);

   private
      Current_Mode : Mode_Type 
                        := Takeoff;
   end Mode_Gate;
end Modes;
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Synchronization

Synchronization by protected objects in Ada95
(entry families)

package Modes is

   type Mode_T is 
      (Takeoff, Ascent, Cruising,
       Descent, Landing);

   protected Mode_Gate is

      procedure Set_Mode
                  (Mode: in Mode_T);
      entry Wait_For_Mode 
                  (Mode_T);

   private
      Current_Mode : Mode_Type 
                        := Takeoff;
   end Mode_Gate;
end Modes;

package body Modes is
   protected body Mode_Gate is

      procedure Set_Mode 
               (Mode: in Mode_T) is

         begin 
            Current_Mode := Mode;
         end Set_Mode;

      entry Wait_For_Mode 
         (for Mode in Mode_T)
         when Current_Mode = Mode is

         begin null; 
         end Wait_For_Mode;

   end Mode_Gate;
end Modes;



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 317 of 896 (Chapter 3: to 380)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization by protected objects in Ada95
(requeue & private entries)

How to implement a queue, at which every task 
can be released only once per triggering event?

package Single_Release is

   entry     Wait;
   procedure Trigger;

end Single_Release;
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Synchronization

Synchronization by protected objects in Ada95
(requeue & private entries)

How to implement a queue, at which every task 
can be released only once per triggering event?

☞ e.g. by employing two entries:

package Single_Release is

   entry     Wait;
   procedure Trigger;

private
   Front_Door,
   Main_Door  : Boolean := False;

   entry Queue;

end Single_Release;
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Synchronization by protected objects in Ada95
(requeue & private entries)

package body Single_Release is

   entry Wait
      when Front_Door is

      begin
         if Wait'Count = 0 then
            Front_Door := False;
            Main_Door  := True;
         end if;

         requeue Queue;

      end Wait;

   entry Queue
      when Main_Door is

      begin
         if Queue’count = 0 then
            Main_Door := False;
         end if;;
      end Queue;

   procedure Trigger is
      begin
         Front_Door := True;
      end Trigger;

end Single_Release;
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Synchronization

Synchronization by protected objects in Ada95
(requeue & private entries)

package body Single_Release is

   entry Wait
      when Front_Door is

      begin
         if Wait'Count = 0 then
            Front_Door := False;
            Main_Door  := True;
         end if;

         requeue Queue;

      end Wait;

   entry Queue
      when Main_Door is

      begin
         if Queue’count = 0 then
            Main_Door := False;
         end if;;
      end Queue;

   procedure Trigger is
      begin
         Front_Door := True;
      end Trigger;

end Single_Release;opening the main door 
before requeuing?
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Synchronization by protected objects in Ada95
(restrictions applying to protected operations)

Code inside a protected procedure, function or entry is bound to non-blocking operations 
(which would keep the whole protected object locked).

Thus the following operations are prohibited:

• entry call statements

• delay statements

• task creations or activations

• calls to sub-programs which contains a potentially blocking operation

• select statements

• accept statements
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Synchronization

Synchronization by protected objects in Ada95
(restrictions applying to protected operations)

Code inside a protected procedure, function or entry is bound to non-blocking operations 
(which would keep the whole protected object locked).

Thus the following operations are prohibited:

• entry call statements

• delay statements

• task creations or activations

• calls to sub-programs which contains a potentially blocking operation

• select statements

• accept statements

☞ The requeue facility allows for a potentially blocking operation, 
but releases the current lock!
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Summary

Shared memory based 
synchronization

General

Criteria:

• level of abstraction

• centralized vs. distributed concepts

• support for consistency
and correctness validations

• error sensitivity

• predictability

• efficiency

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods 

(mutual exclusion)
Conditional 

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)
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Summary

Shared memory based 
synchronization

POSIX

• all low level constructs available.

• no connection with the 
actual data-structures.

• error-prone.

• non-determinism introduced by 
‘release some’ semantics of 
conditional variables (cond_signal). Semaphores

(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods 

(mutual exclusion)
Conditional 

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)
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Summary

Shared memory based 
synchronization

Java

• mutual exclusion 
(synchronized methods) 
as the only support.

• general notification feature 
(no conditional variables)

• non-restricted object oriented extension 
introduces hard to predict timing 
behaviours.

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods 

(mutual exclusion)
Conditional 

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)
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Summary

Shared memory based 
synchronization

Modula-1, CHILL

• full monitor implementation 
(Dijkstra-Hoare monitor concept).

… no more, no less, …

☞ all features of and criticism 
about monitors apply.

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods 

(mutual exclusion)
Conditional 

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)
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Summary

Shared memory based 
synchronization

Ada95

• complete synchronization support

• low-level semaphores 
for very special cases.

• predictable timing (☞ scheduler).

☞ most memory oriented synchronization 
conditions are realized by the compiler 
or the run-time environment directly 
rather then the programmer. 

(Ada95 is currently without any mainstream 
competitor in this field)

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods 

(mutual exclusion)
Conditional 

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)
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Synchronization

Message-based synchronization
• Synchronization model

• Asynchronous
• Synchronous
• Remote invocation

• Addressing (name space)

• direct communication
• mail-box communication

• Message structure

• arbitrary
• restricted to ‘basic’ types
• restricted to un-typed communications
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Synchronization

Message-based synchronization
Asynchronous messages

If there is a listener: 

☞ send the message directly

async. send async. receiveasync. send async. receive

timetime

P2P1
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Synchronization

Message-based synchronization
Asynchronous messages

If the receiver becomes available at a later stage: 

☞ the message needs to be buffered

async. send

async. receive

async. send

async. receive

timetime

P2P1
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Synchronization

Message-based synchronization
Synchronous messages

Delay the receiver:

• until the message becomes available

sync. send sync. receive

timetime

P2P1
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Synchronization

Message-based synchronization
Synchronous messages

Delay the receiver:

• until the message becomes available

Simulated by asynchronous messages:

☞ two asynchronous messages required

async. send async. receive

async. sendasync. receive

async. send async. receive

async. sendasync. receive

timetime

P2P1
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Synchronization

Message-based synchronization
Synchronous messages

Delay the sender until:

• a receiver is available 

• a receiver got the message

sync. send

sync. receive

timetime

P2P1
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Synchronization

Message-based synchronization
Synchronous messages

Delay the sender until:

• a receiver is available 

• a receiver got the message

Simulated by asynchronous messages:
If the receiver becomes available at a later stage: 

☞ message needs to be buffered

async. send async. receive

async. sendasync. receive

async. send

async. receive

async. sendasync. receive

timetime

P2P1
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Synchronization

Message-based synchronization
Remote invocation

Delay the receiver, until:

• an invocation is available

• a receiver executed an addressed routine

rem. invoc. invocation

timetime

P2P1
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Synchronization

Message-based synchronization
Remote invocation

Delay the receiver, until:

• an invocation is available

• a receiver executed an addressed routine

Simulated by asynchronous messages:

☞ four messages are required

async. send async. receive

async. sendasync. receive

async. send async. receive

async. sendasync. receive

async. send async. receive

async. sendasync. receive

timetime

P2P1
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Synchronization

Message-based synchronization
Remote invocation

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

• a receiver executed an addressed routine

rem. invoc.

invocation

timetime

P2P1
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Synchronization

Message-based synchronization
Remote invocation

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

• a receiver executed an addressed routine

Simulated by asynchronous messages:

☞ four messages are required

☞ message buffering required

async. send async. receive

async. sendasync. receive

async. send async. receive

async. sendasync. receive

async. send

async. receive

async. sendasync. receive

timetime

P2P1
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Synchronization

Message-based synchronization
Asynchronous remote invocation

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

rem. invoc.

invocation

timetime

P2P1
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Synchronization

Message-based synchronization
Asynchronous remote invocation

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

Simulated by asynchronous messages:

☞ two messages are required

async. send async. receive

async. sendasync. receive

async. send

async. receive

async. sendasync. receive

timetime

P2P1
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Synchronization

Synchronous vs. asynchronous communications
Purpose ‘synchronization’: ☞ synchronous messages / remote invocations
Purpose ‘in-time delivery’: ☞ asynchronous messages / asynchronous remote invocations
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Synchronization

Synchronous vs. asynchronous communications
Purpose ‘synchronization’: ☞ synchronous messages / remote invocations
Purpose ‘in-time delivery’: ☞ asynchronous messages / asynchronous remote invocations

☞ ‘Real’ synchronous message passing in distributed systems requires hardware support.

☞ Asynchronous message passing requires the usage of (infinite?) buffers.
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Synchronization

Synchronous vs. asynchronous communications
Purpose ‘synchronization’: ☞ synchronous messages / remote invocations
Purpose ‘in-time delivery’: ☞ asynchronous messages / asynchronous remote invocations

☞ ‘Real’ synchronous message passing in distributed systems requires hardware support.

☞ Asynchronous message passing requires the usage of (infinite?) buffers.

Can both communication modes emulate each other?
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Synchronization

Synchronous vs. asynchronous communications
Purpose ‘synchronization’: ☞ synchronous messages / remote invocations
Purpose ‘in-time delivery’: ☞ asynchronous messages / asynchronous remote invocations

☞ ‘Real’ synchronous message passing in distributed systems requires hardware support.

☞ Asynchronous message passing requires the usage of (infinite?) buffers.

Can both communication modes emulate each other?
• Synchronous communications are emulated 

by a combination of asynchronous messages in some systems.

• Asynchronous communications can be emulated in synchronized message passing systems by 
introducing ‘buffer-tasks’ (de-coupling sender and receiver as well as allowing for broadcasts).
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Synchronization

Addressing (name space)
Direct vs. indirect:

send     <message> to   <process-name>
wait for <message> from <process-name>
send     <message> to   <mailbox>
wait for <message> from <mailbox>
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Synchronization

Addressing (name space)
Direct vs. indirect:

send     <message> to   <process-name>
wait for <message> from <process-name>
send     <message> to   <mailbox>
wait for <message> from <mailbox>

Asymmetrical addressing:

send     <message> to …
wait for <message>

☞ Client-server paradigm
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Synchronization

Addressing (name space)

Communication medium:

Connections Functionality

one-to-one buffer, queue, synchronization

one-to-many multicast

one-to-all broadcast

many-to-one local server, synchronization

all-to-one general server, synchronization

many-to-many general network- or bus-system
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Synchronization

Message structure
• Machine dependent representations need to be taken care of in a distributed environment.

• Communication system is often outside the typed language environment.

Most communication systems are handling streams (packets) of a basic element type only.
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Synchronization

Message structure
• Machine dependent representations need to be taken care of in a distributed environment.

• Communication system is often outside the typed language environment.

Most communication systems are handling streams (packets) of a basic element type only.

☞ Conversion routines for data-structures other then the basic element type are supplied …

… manually (POSIX, ‘C/C++’, Java)
… semi-automatic (CORBA)
… automatic and are typed-persistent (Ada95, CHILL, Occam2)
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Synchronization

Message structure (Ada95)
package Ada.Streams is
   pragma Pure (Streams);

   type Root_Stream_Type is abstract tagged limited private;

   type Stream_Element is mod implementation-defined;

   type Stream_Element_Offset is range implementation-defined;

   subtype Stream_Element_Count is
      Stream_Element_Offset range 0..Stream_Element_Offset'Last;

   type Stream_Element_Array is
      array (Stream_Element_Offset range <>) of Stream_Element;

   procedure Read  (…) is abstract;
   procedure Write (…) is abstract;

private
   … -- not specified by the language
end Ada.Streams;



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 351 of 896 (Chapter 3: to 380)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message structure (Ada95)
Reading and writing values of any type to a stream:

procedure S'Write(
   Stream : access Ada.Streams.Root_Stream_Type'Class; Item : in  T);
procedure S'Class'Write(
   Stream : access Ada.Streams.Root_Stream_Type'Class; Item : in  T'Class);

procedure S'Read(
   Stream : access Ada.Streams.Root_Stream_Type'Class; Item : out T);
procedure S'Class'Read(
   Stream : access Ada.Streams.Root_Stream_Type'Class; Item : out T'Class)

Reading and writing values, bounds and discriminants of any type to a stream:

procedure S'Output(
   Stream : access Ada.Streams.Root_Stream_Type'Class; Item : in  T);

function  S'Input(
   Stream : access Ada.Streams.Root_Stream_Type'Class) return T;
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Synchronization

Message-based synchronization
Practical message-passing systems:

POSIX:
“message queues”:
☞ ordered indirect [asymmetrical | symmetrical] asynchronous
byte-level many-to-many message passing
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Synchronization

Message-based synchronization
Practical message-passing systems:

POSIX:
“message queues”:
☞ ordered indirect [asymmetrical | symmetrical] asynchronous
byte-level many-to-many message passing

CHILL:
“buffers”, ”signals”:
☞ ordered indirect [asymmetrical | symmetrical] [synchronous | asynchronous] 
typed [many-to-many | many-to-one] message passing
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Synchronization

Message-based synchronization
Practical message-passing systems:

POSIX:
“message queues”:
☞ ordered indirect [asymmetrical | symmetrical] asynchronous
byte-level many-to-many message passing

CHILL:
“buffers”, ”signals”:
☞ ordered indirect [asymmetrical | symmetrical] [synchronous | asynchronous] 
typed [many-to-many | many-to-one] message passing

Occam2:
“channels”:
☞ indirect symmetrical synchronous fully-typed one-to-one message passing
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Synchronization

Message-based synchronization
Practical message-passing systems:

POSIX:
“message queues”:
☞ ordered indirect [asymmetrical | symmetrical] asynchronous
byte-level many-to-many message passing

CHILL:
“buffers”, ”signals”:
☞ ordered indirect [asymmetrical | symmetrical] [synchronous | asynchronous] 
typed [many-to-many | many-to-one] message passing

Occam2:
“channels”:
☞ indirect symmetrical synchronous fully-typed one-to-one message passing

Ada95:
“(extended) rendezvous”:
☞ ordered direct asymmetrical [synchronous | asynchronous] 
fully-typed many-to-one remote invocation
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Synchronization

Message-based synchronization
Practical message-passing systems:

POSIX:
“message queues”:
☞ ordered indirect [asymmetrical | symmetrical] asynchronous
byte-level many-to-many message passing

CHILL:
“buffers”, ”signals”:
☞ ordered indirect [asymmetrical | symmetrical] [synchronous | asynchronous] 
typed [many-to-many | many-to-one] message passing

Occam2:
“channels”:
☞ indirect symmetrical synchronous fully-typed one-to-one message passing

Ada95:
“(extended) rendezvous”:
☞ ordered direct asymmetrical [synchronous | asynchronous] 
fully-typed many-to-one remote invocation

Java: no communication via messages available
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Synchronization

Message-based synchronization
Practical message-passing systems:
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POSIX: * * * * * bytes * message passing

CHILL: * * * * * * typed * * message passing

Occam2: * * * fully typed * message passing

Ada95: * * * * * fully typed * remote invocation

Java: no communication via messages available
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Synchronization

Message-based synchronization
Practical message-passing systems for strict synchronisation purposes:
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POSIX: * * * * * bytes * message passing

CHILL: * * * * * * typed * * message passing

Occam2: * * * fully typed * message passing

Ada95: * * * * * fully typed * remote invocation

Java: no communication via messages available
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Synchronization

Message-based synchronization in Occam2
Communication is ensured by means of a ‘channel’, which:
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Synchronization

Message-based synchronization in Occam2
Communication is ensured by means of a ‘channel’, which:

• can be used by one writer and one reader process only

• and is synchronous:

CHAN OF INT SensorChannel:

PAR
   INT reading:
   SEQ i = 0 FOR 1000
      SEQ
         -- generate reading
         SensorChannel ! reading

   INT data:
   SEQ i = 0 FOR 1000
      SEQ
         SensorChannel ? data
         -- employ data
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Synchronization

Message-based synchronization in Occam2
Communication is ensured by means of a ‘channel’, which:

• can be used by one writer and one reader process only

• and is synchronous:

CHAN OF INT SensorChannel:

PAR
   INT reading:
   SEQ i = 0 FOR 1000
      SEQ
         -- generate reading
         SensorChannel ! reading

   INT data:
   SEQ i = 0 FOR 1000
      SEQ
         SensorChannel ? data
         -- employ data

 tasks are synchronized 
at these points
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Synchronization

Message-based synchronization in CHILL
CHILL is the ‘CCITT High Level Language’,
where CCITT is the Comité Consultatif International Télégraphique et Téléphonique.
The CHILL language development was started in 1973 and standardized in 1979.

☞ strong support for concurrency, synchronization, and communication 
(monitors, buffered message passing, synchronous channels)
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Synchronization

Message-based synchronization in CHILL
CHILL is the ‘CCITT High Level Language’,
where CCITT is the Comité Consultatif International Télégraphique et Téléphonique.
The CHILL language development was started in 1973 and standardized in 1979.

☞ strong support for concurrency, synchronization, and communication 
(monitors, buffered message passing, synchronous channels)

dcl SensorBuffer buffer (32) int;
…
send SensorBuffer (reading);     |         receive case
                                 |            (SensorBuffer in data) : …
                                 |         esac;
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Synchronization

Message-based synchronization in CHILL
CHILL is the ‘CCITT High Level Language’,
where CCITT is the Comité Consultatif International Télégraphique et Téléphonique.
The CHILL language development was started in 1973 and standardized in 1979.

☞ strong support for concurrency, synchronization, and communication 
(monitors, buffered message passing, synchronous channels)

dcl SensorBuffer buffer (32) int;
…
send SensorBuffer (reading);     |         receive case
                                 |            (SensorBuffer in data) : …
                                 |         esac;

signal SensorChannel = (int) to consumertype;
…
send SensorChannel (reading)     |         receive case
   to consumer                   |            (SensorChannel in data): …
                                 |         esac;
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Synchronization

Message-based synchronization in CHILL
CHILL is the ‘CCITT High Level Language’,
where CCITT is the Comité Consultatif International Télégraphique et Téléphonique.
The CHILL language development was started in 1973 and standardized in 1979.

☞ strong support for concurrency, synchronization, and communication 
(monitors, buffered message passing, synchronous channels)

dcl SensorBuffer buffer (32) int;
…
send SensorBuffer (reading);     |         receive case
                                 |            (SensorBuffer in data) : …
                                 |         esac;

signal SensorChannel = (int) to consumertype;
…
send SensorChannel (reading)     |         receive case
   to consumer                   |            (SensorChannel in data): …
                                 |         esac;

asynchronous

synchronous
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Synchronization

Message-based synchronization in Ada95
Ada95 supports remote invocations ((extended) rendezvous) in form of:

• entry points in tasks

• full set of parameter profiles supported

If the local and the remote task are on different architectures, 
or if an intermediate communication system is employed:

☞ parameters incl. bounds and discriminants are ‘tunnelled’ through byte-stream-formats.
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Synchronization

Message-based synchronization in Ada95
Ada95 supports remote invocations ((extended) rendezvous) in form of:

• entry points in tasks

• full set of parameter profiles supported

If the local and the remote task are on different architectures, 
or if an intermediate communication system is employed:

☞ parameters incl. bounds and discriminants are ‘tunnelled’ through byte-stream-formats.

Synchronization:

• both tasks are synchronized at the beginning of the remote invocation (☞ ‘rendezvous’)

• the calling task if blocked until the remote routine is completed (☞ ‘extended rendezvous’)
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Synchronization

Message-based synchronization in Ada95
Remote invocation

(Rendezvous)

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

• a receiver started an addressed routine

rem. invoc.

invocation

timetime

P2P1

synchronized
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Synchronization

Message-based synchronization in Ada95
Remote invocation

(Extended rendezvous)

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

• a receiver executed an addressed routine

• a receiver passed the results

rem. invoc.

invocation

timetime

P2P1

send results

get results

synchronized

released
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Synchronization

Message-based synchronization in Ada95
(Rendezvous)

…
<entry_name> [(index)] <parameters>
… -- waiting for synchronization
… -- 
… --
… --
…
…
…
…
…

…
…
…
…
…
accept <entry_name> [(index)]
          <parameter_profile>;
… 
… 
… 
…
…

synchronized
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Synchronization

Message-based synchronization in Ada95
(Rendezvous)

…
…
…
…
…
<entry_name> [(index)] <parameters>
…
…
…
…

…
accept <entry_name> [(index)]
          <parameter_profile>;
… -- waiting for synchronization
… -- 
… --
…
… 
… 
… 

synchronized
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Synchronization

Message-based synchronization in Ada95
(Extended rendezvous)

…
<entry_name> [(index)] <parameters>
… -- waiting for synchronization
… --
… --
… --
      … --
      … -- blocked
      … --
      … --
…

…
…
…
…
…
accept <entry_name> [(index)]
          <parameter_profile> do
   … --
   … -- remote invocation
   … -- 
end <entry_name>;
…

synchronizedsynchronized

synchronizedreturn results
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Synchronization

Message-based synchronization in Ada95
(Extended rendezvous)

…
… 
… 
… 
… 
<entry_name> [(index)] <parameters>
      … --
      … -- blocked
      … --
      … --
…

…
accept <entry_name> [(index)]
          <parameter_profile> do
… -- waiting for synchronization
… --
… --
   … --
   … --
   … -- remote invocation
   … -- 
end <entry_name>;
…

synchronizedsynchronized

synchronizedreturn results
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Synchronization

Message-based synchronization in Ada95
Some things to consider for task-entries:

• In contrast to protected-object-entries, task-entries can call other blocking operations.
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Synchronization

Message-based synchronization in Ada95
Some things to consider for task-entries:

• In contrast to protected-object-entries, task-entries can call other blocking operations.

• Accept statements can be nested (but need to be different).

☞ helpful e.g. to synchronize more than two tasks.



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 376 of 896 (Chapter 3: to 380)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization in Ada95
Some things to consider for task-entries:

• In contrast to protected-object-entries, task-entries can call other blocking operations.

• Accept statements can be nested (but need to be different).

☞ helpful e.g. to synchronize more than two tasks.

• Accept statements can have a dedicated exception handler (like any other code-block).

Exceptions, which are not handled during the rendezvous phase 
are propagated to all involved tasks.
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Synchronization

Message-based synchronization in Ada95
Some things to consider for task-entries:

• In contrast to protected-object-entries, task-entries can call other blocking operations.

• Accept statements can be nested (but need to be different).

☞ helpful e.g. to synchronize more than two tasks.

• Accept statements can have a dedicated exception handler (like any other code-block).

Exceptions, which are not handled during the rendezvous phase 
are propagated to all involved tasks.

• Parameters cannot be direct ‘access’ parameters, but can be access-types.
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Synchronization

Message-based synchronization in Ada95
Some things to consider for task-entries:

• In contrast to protected-object-entries, task-entries can call other blocking operations.

• Accept statements can be nested (but need to be different).

☞ helpful e.g. to synchronize more than two tasks.

• Accept statements can have a dedicated exception handler (like any other code-block).

Exceptions, which are not handled during the rendezvous phase 
are propagated to all involved tasks.

• Parameters cannot be direct ‘access’ parameters, but can be access-types.

• ‘count on task-entries is defined, but is only accessible from inside the tasks owning the entry.
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Synchronization

Message-based synchronization in Ada95
Some things to consider for task-entries:

• In contrast to protected-object-entries, task-entries can call other blocking operations.

• Accept statements can be nested (but need to be different).

☞ helpful e.g. to synchronize more than two tasks.

• Accept statements can have a dedicated exception handler (like any other code-block).

Exceptions, which are not handled during the rendezvous phase 
are propagated to all involved tasks.

• Parameters cannot be direct ‘access’ parameters, but can be access-types.

• ‘count on task-entries is defined, but is only accessible from inside the tasks owning the entry.

• Entry families (arrays of entries) are supported.

• Private entries (accessible for internal tasks) are supported.
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Summary

Synchronization

• Shared memory based synchronization

• Flags, condition variables, semaphores, …
… conditional critical regions, monitors, protected objects.

• Guard evaluation times, nested monitor calls, deadlocks, …
… simultaneous reading, queue management.

• Synchronization and object orientation, blocking operations and re-queuing.

• Message based synchronization

• Synchronization models
• Addressing modes
• Message structures
• Examples
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Non-Determinism

Selective waiting
Dijkstra’s guarded commands:

if x <= y -> m := x
❏  x >= y -> m := y
fi

☞ the programmer needs to design the alternatives as ‘parallel’ options: 
all cases need to be covered and overlapping conditions need to lead to the same result
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Non-Determinism

Selective waiting
Dijkstra’s guarded commands:

if x <= y -> m := x
❏  x >= y -> m := y
fi

☞ the programmer needs to design the alternatives as ‘parallel’ options: 
all cases need to be covered and overlapping conditions need to lead to the same result

selection is 
non-deterministic!
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Non-Determinism

Selective waiting
Dijkstra’s guarded commands:

if x <= y -> m := x
❏  x >= y -> m := y
fi

☞ the programmer needs to design the alternatives as ‘parallel’ options: 
all cases need to be covered and overlapping conditions need to lead to the same result

Extremely different philosophy: ‘C’-switch:

switch (x) {
   case 1: r := 3;
   case 2: r := 2; break;
   case 3: r := 1;
}

☞ the sequence of alternatives has a crucial role.

selection is 
non-deterministic!
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Non-Determinism

Selective waiting in Occam2
ALT
   Guard1
      Process1
   Guard2
      Process2
…

• Guards are referring to boolean expressions and/or channel input operations. 
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Non-Determinism

Selective waiting in Occam2
ALT
   Guard1
      Process1
   Guard2
      Process2
…

• Guards are referring to boolean expressions and/or channel input operations. 

• The boolean expressions are local expressions, i.e. if none of them evaluates to true 
at the time of the evaluation of the ALT-statement, then the process is stopped.
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Non-Determinism

Selective waiting in Occam2
ALT
   Guard1
      Process1
   Guard2
      Process2
…

• Guards are referring to boolean expressions and/or channel input operations. 

• The boolean expressions are local expressions, i.e. if none of them evaluates to true 
at the time of the evaluation of the ALT-statement, then the process is stopped.

• If all triggered channel input operations evaluate to false, 
the process is suspended until further activity on one of the named channels.
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Non-Determinism

Selective waiting in Occam2
ALT
   Guard1
      Process1
   Guard2
      Process2
…

• Guards are referring to boolean expressions and/or channel input operations. 

• The boolean expressions are local expressions, i.e. if none of them evaluates to true 
at the time of the evaluation of the ALT-statement, then the process is stopped.

• If all triggered channel input operations evaluate to false, 
the process is suspended until further activity on one of the named channels.

• Any Occam2 process can be employed in the ALT-statement
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Non-Determinism

Selective waiting in Occam2
ALT
   Guard1
      Process1
   Guard2
      Process2
…

• Guards are referring to boolean expressions and/or channel input operations. 

• The boolean expressions are local expressions, i.e. if none of them evaluates to true 
at the time of the evaluation of the ALT-statement, then the process is stopped.

• If all triggered channel input operations evaluate to false, 
the process is suspended until further activity on one of the named channels.

• Any Occam2 process can be employed in the ALT-statement

• The ALT-statement is non-deterministic (there is also a deterministic version: PRI ALT).
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Non-Determinism

Selective waiting in Occam2
ALT
   NumberInBuffer < Size & Append ? Buffer [Top]
      SEQ
         NumberInBuffer := NumberInBuffer + 1
         Top            := (Top + 1) REM Size
   NumberInBuffer > 0 & Request ? ANY
      SEQ
         Take ! Buffer [Base]
         NumberInBuffer := NumberInBuffer - 1
         Base           := (Base + 1) REM Size
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Non-Determinism

Selective waiting in Occam2
ALT
   NumberInBuffer < Size & Append ? Buffer [Top]
      SEQ
         NumberInBuffer := NumberInBuffer + 1
         Top            := (Top + 1) REM Size
   NumberInBuffer > 0 & Request ? ANY
      SEQ
         Take ! Buffer [Base]
         NumberInBuffer := NumberInBuffer - 1
         Base           := (Base + 1) REM Size

• synchronization on input-channels only:

☞ to initiate the sending of data (Take ! Buffer [Base]),
a request need to be made first (Request ? ANY)

CSP (Hoare) also supports non-deterministic selective waiting 
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Selective Synchronization

Message-based selective synchronization in Ada95
Forms of selective waiting:

select_statement ::= selective_accept       |
                     conditional_entry_call |
                     timed_entry_call       |
                     asynchronous_select

… underlying concept: Dijkstra’s guarded commands

selective_accept implements …

• … wait for more than a single rendezvous at any one time

• … time-out if no rendezvous is forthcoming within a specified time

• … withdraw its offer to communicate if no rendezvous is available immediately

• … terminate if no clients can possibly call its entries
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Selective Synchronization

Message-based selective synchronization in Ada95
selective_accept in its full syntactical form in Ada95:

selective_accept ::= select
                             [guard] selective_accept_alternative
                      { or   [guard] selective_accept_alternative
                      [ else sequence_of_statements ]
                     end select;

guard ::= when <condition> =>

selective_accept_alternative ::= accept_alternative    | 
                                 delay_alternative     |
                                 terminate_alternative

accept_alternative    ::= accept_statement [ sequence_of_statements ]
delay_alternative     ::= delay_statement [ sequence_of_statements ]
terminate_alternative ::= terminate;
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Selective Synchronization

Basic forms of selective synchronization
(select-or)

select
   accept … do …
   end …
or
   accept … do …
   end …
or
   accept … do …
   end …
or
   accept … do …
   end …
…
end select;

• If none of the named entries have been
called, the task is suspended until one of the
entries is addressed by another task.

• The selection of an accept is non-determinis-
tic, in case that multiple entries are called.

☞ The selection can be controlled by means of
the real-time systems annex.

• The select statement is completed, when at
least one of the entries has been called and
those accept-block has been executed.
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Selective Synchronization

Basic forms of selective synchronization
(guarded select-or)

select
   when <condition> =>
      accept … do …
      end …
or
   when <condition> =>
      accept … do …
      end …
or
   when <condition> =>
      accept … do …
      end …
…
end select;

• Analogue to Dijkstra’s guarded commands

• all accepts closed will raise a Program_Error

☞ set of conditions need to be complete
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Selective Synchronization

Basic forms of selective synchronization
(guarded select-or-else)

select
   [ when <condition> => ]
      accept … do …
      end …
or
   [ when <condition> => ]
      accept … do …
      end …
or
   [ when <condition> => ]
      accept … do …
      end …
else
   <statements>
…
end select;

• If none of the open entries can be accepted
immediately, the else alternative is selected.

• There can be only one else alternative and it
cannot be guarded.
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Selective Synchronization

Basic forms of selective synchronization
(guarded select-or-delay)

select
   [ when <condition> => ]
      accept … do …
      end …
or
   [ when <condition> => ]
      delay …
      <statements>
or
   [ when <condition> => ]
      delay …
      <statements>
…
end select;

• If none of the open entries has been called
before the amount of time specified in the
earliest open delay alternative, this delay al-
ternative is selected.

• There can be multiple delay alternatives if
more than one delay alternative expires si-
multaneously, either one may be chosen.

• delay and delay until can be employed.
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Selective Synchronization

Basic forms of selective synchronization
(guarded select-or-terminate)

select
   [ when <condition> => ]
      accept … do …
      end …
or
   [ when <condition> => ]
      accept … do …
      end …
or
   [ when <condition> => ]
      terminate;
…
end select;

The terminate alternative is chosen if none of the 
entries can ever be called again, i.e.:

• all tasks which can possibly call any of the
named entries are terminated.

or 

• all remaining active tasks which can possibly
call any of the named entries are waiting on
selective terminate statements and none of
their open entries can be called any longer.

☞ This task and all its dependent waiting-for-
termination tasks are terminated together.
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Selective Synchronization

Basic forms of selective synchronization
(guarded select-or-else select-or-delay select-or-terminate)

select
   [ when <condition> => ]
      accept … do …
      end …
or
   [ when <condition> => ]
      accept … do …
      end …
else
   <statements>
…
end select;

select
   [ when <condition> => ]
      accept … do …

      end …
or
   [ when <condition> => ]
      delay …
      <statements>
…
end select;

select
   [ when <condition> => ]
      accept … do …
      end …
or
   [ when <condition> => ]
      terminate;
…
end select;

else - delay - terminate
alternatives 

cannot be mixed!
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Selective Synchronization

Conditional & timed entry-calls
conditional_entry_call ::=
   select
      entry_call_statement
      [sequence_of_statements]
   else
      sequence_of_statements
   end select;

select
   Light_Monitor.Wait_for_Light;
   Lux := True;
else
   Lux := False;
end;

timed_entry_call ::=
   select
      entry_call_statement
      [sequence_of_statements]
   or
      delay_alternative
   end select;

select
   Controller.Request (Medium)
      (Some_Item);
   -- process data
or
   delay 45.0;
   -- try something else
end select;



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 402 of 896 (Chapter 4: to 413)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Selective Synchronization

Conditional & timed entry-calls
conditional_entry_call ::=
   select
      entry_call_statement
      [sequence_of_statements]
   else
      sequence_of_statements
   end select;

select
   Light_Monitor.Wait_for_Light;
   Lux := True;
else
   Lux := False;
end;

timed_entry_call ::=
   select
      entry_call_statement
      [sequence_of_statements]
   or
      delay_alternative
   end select;

select
   Controller.Request (Medium)
      (Some_Item);
   -- process data
or
   delay 45.0;
   -- try something else
end select;

There is only 
one entry call

and either 
one ‘else ‘

or 
one ‘or delay’
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Selective Synchronization

Conditional & timed entry-calls
conditional_entry_call ::=
   select
      entry_call_statement
      [sequence_of_statements]
   else
      sequence_of_statements
   end select;

select
   Light_Monitor.Wait_for_Light;
   Lux := True;
else
   Lux := False;
end;

timed_entry_call ::=
   select
      entry_call_statement
      [sequence_of_statements]
   or
      delay_alternative
   end select;

select
   Controller.Request (Medium)
      (Some_Item);
   -- process data
or
   delay 45.0;
   -- try something else
end select;

The idea in both cases is to withdraw a synchronization request
and not to implement polling or busy-waiting.
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Selective Synchronization

Non-determinism in selective synchronizations
☞ If equal alternatives are given, then the program correctness (incl. the timing specifications)

must not be affected by the actual selection.

• If alternatives have different priorities, 
this can be expressed e.g. by means of the Ada real-time annex.
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Selective Synchronization

Non-determinism in selective synchronizations
☞ If equal alternatives are given, then the program correctness (incl. the timing specifications)

must not be affected by the actual selection.

• If alternatives have different priorities, 
this can be expressed e.g. by means of the Ada real-time annex.

• Non-determinism in concurrent systems is or can be also introduced by:

• non-ordered monitor or other queues
• buffering / routing message passing systems
• non-deterministic schedulers
• timer quantization
• clock drifts
• network congestions
• … any other form of asynchronism
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remember our introduction: Models and Terminology

The concurrent programming abstraction

Correctness of concurrent non-real-time systems 
[logical correctness]:

• does not depend on speeds / execution times / delays

• does not depend on actual interleaving of concurrent processes

☞ does depend on all possible sequences of interaction points
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remember our introduction: Models and Terminology

The concurrent programming abstraction

Extended concepts of correctness in concurrent systems:

¬ Termination is often not intended or even considered a failure

• Safety properties:

where  means that  does always hold

• Liveness properties:

where  means that  does eventually hold (and will then stay true)
and  is the current state of the concurrent system

P I( ) Processes I S,( )∧( ) Q I S,( )⇒
Q Q

P I( ) Processes I S,( )∧( )  Q I S,( )◊⇒
 Q◊ Q

S
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Models and Terminology

The concurrent programming abstraction

Correctness of concurrent non-real-time systems 
[logical correctness]:

☞ does depend on all possible sequences of interaction points
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Models and Terminology

The concurrent programming abstraction

Correctness of concurrent non-real-time systems 
[logical correctness]:

☞ does depend on all possible sequences of interaction points

☞ Isn’t there an actual unique sequence of interaction points, 
… ☞ which is determined by the system and can be calculated?
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Models and Terminology

The concurrent programming abstraction

Correctness of concurrent non-real-time systems 
[logical correctness]:

☞ does depend on all possible sequences of interaction points

☞ Isn’t there an actual unique sequence of interaction points, 
… ☞ which is determined by the system and can be calculated?

in general: NO 
- due to common intrinsically non-deterministic effects
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Non-Determinism

Selective waiting
Dijkstra’s guarded commands:

if x <= y -> m := x
❏  x >= y -> m := y
fi

☞ the programmer needs to design the alternatives as ‘parallel’ options: 
all cases need to be covered and overlapping conditions need to lead to the same result

☞ Systems based on non-deterministic alternatives
extent canonically to concurrent systems

selection is 
non-deterministic!
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Selective Synchronization

Basic forms of selective synchronization in Ada95
(guarded select-or)

select
   when <condition> =>
      accept … do …
      end …
or
   when <condition> =>
      accept … do …
      end …
or
   when <condition> =>
      accept … do …
      end …
…
end select;

Considering all alternatives 
leads to many different interleavings!

How to keep it understandable / verifiable?

☞ avoid combinatorial explosions!

☞ reunite different paths as soon as possible

☞ specify unique system-wide 
synchronization-(check)-points
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Summary

Non-Determinism

• Selective synchronization

• Selective accepts
• Selective calls
• Indeterminism in message based synchronization

• General Non-Determinism in Concurrent Systems
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Scheduling

Purpose of scheduling
A scheduling scheme provides two features:

• Ordering the use of resources (e.g. CPUs, networks)
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Scheduling

Purpose of scheduling
A scheduling scheme provides two features:

• Ordering the use of resources (e.g. CPUs, networks)
• Predicting the worst-case behaviour of the system 

when the scheduling algorithm is applied
… in case that some or all information about the expected resource requests are known
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Scheduling

Purpose of scheduling
A scheduling scheme provides two features:

• Ordering the use of resources (e.g. CPUs, networks)
• Predicting the worst-case behaviour of the system 

when the scheduling algorithm is applied
… in case that some or all information about the expected resource requests are known

A prediction can then be used

☞ at compile-run: to confirm the overall resource requirements of the application, or
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Scheduling

Purpose of scheduling
A scheduling scheme provides two features:

• Ordering the use of resources (e.g. CPUs, networks)
• Predicting the worst-case behaviour of the system 

when the scheduling algorithm is applied
… in case that some or all information about the expected resource requests are known

A prediction can then be used

☞ at compile-run: to confirm the overall resource requirements of the application, or

☞ at run-time: to permit acceptance of additional usage/reservation requests.
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Scheduling

Criteria for scheduling methods 
Performance criteria:

minimize the …

         Process / user perspective:

Waiting time maximum / average / variance

Response time maximum / average / variance

Turnaround time maximum / average / variance
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Scheduling

Criteria for scheduling methods 
Performance criteria:

minimize the …
Predictability criteria:

minimize the diversion from given

         Process / user perspective:

Waiting time maximum / average / variance minimal and maximal waiting times

Response time maximum / average / variance minimal and maximal response times

Turnaround time maximum / average / variance deadlines
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Scheduling

Criteria for scheduling methods 
Performance criteria:

minimize the …
Predictability criteria:

minimize the diversion from given

         Process / user perspective:

Waiting time maximum / average / variance minimal and maximal waiting times

Response time maximum / average / variance minimal and maximal response times

Turnaround time maximum / average / variance deadlines

         System perspective:

Throughput
maximum / average / variance 

of CPU time per process
—

Utilization CPU idle time —
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Scheduling

Time scales of scheduling

CPU
ready

blocked

pre-emption or cycle done

block or synchronize

executing
dispatch

Short-term
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Scheduling

Time scales of scheduling

CPU
ready

ready, suspended

blocked, suspended

blocked

pre-emption or cycle done

block or synchronize

executing
dispatch

suspend (swap-out)

swap-in

swap-out

unblock

suspend (swap-out)

Short-term

Medium-term



Real-Time & Embedded SystemsConcurrent & Distributed Systems

Scheduling

Time scales of scheduling

CPU
creation

batch ready

ready, suspended

blocked, suspended

blocked

pre-emption or cycle done

terminate.

block or synchronize

executingadmit

dispatch

suspend (swap-out)

swap-in

swap-out

unblock

suspend (swap-out)

Long-term

Short-term

Medium-term
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Scheduling

Example: Requested times

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

First come, first served (FCFS) – bad case: (arrival order: , , )

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

First come, first served (FCFS) – bad case: (arrival order: , , )

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

First come, first served (FCFS) – bad case: (arrival order: , , )

Waiting time: 0…11; average: 5.95 – Turnaround time: 3…12; average: 8.47

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

First come, first served (FCFS) – nice case: (arrival order: , , )

Waiting time: 0…11; average: 5.47 – Turnaround time: 3…12; average: 8.00

☞ The actual average waiting time for FCFS may vary here between: 5.47 and 5.95 

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Round robin (RR) – pre-emption

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Round robin (RR) – pre-emption

Waiting time: 0…4; average: 1.21 – Turnaround time: 1…19; average: 5.63

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Round robin (RR) – pre-emption

Waiting time: 0…4; average: 1.21 – Turnaround time: 1…19; average: 5.63

☞ Waiting and average turnaround time is going down, but maximal turnaround time is going up

… assuming that task-switching is free and always possible

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

• implement multiple 
hierarchical ready-queues

C
PU

priority 0

priority 1

executingadmit

dispatch 20

priority i

dispatch 21

dispatch 2i
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

• implement multiple 
hierarchical ready-queues

• fetch processes from the highest 
filled ready queue

C
PU

priority 0

priority 1

executingadmit

dispatch 20

priority i

dispatch 21

dispatch 2i
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

• implement multiple 
hierarchical ready-queues

• fetch processes from the highest 
filled ready queue

• dispatch more CPU time for lower 
priorities (  units)

C
PU

priority 0

priority 1

executingadmit

dispatch 20

priority i

dispatch 21

dispatch 2i

2i
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

• implement multiple 
hierarchical ready-queues

• fetch processes from the highest 
filled ready queue

• dispatch more CPU time for lower 
priorities (  units)

☞ processes on lower ranks may 
suffer starvation

☞ new and short tasks 
will be preferred

C
PU

priority 0

priority 1

executingadmit

dispatch 20

priority i

dispatch 21

dispatch 2i

2i
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

Waiting time: 0…6; average: 1.79 – Turnaround time: 1…21; average 5.63

☞ less task switches than RR, 
but long processes can suffer starvation!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Shortest job first (SJF) – Ci is known

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Shortest job first (SJF) – Ci is known

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Shortest job first (SJF) – Ci is known

Waiting time: 0…10; average: 3.47 – Turnaround time: 1…14; average: 6.00

☞ on average this is doing better than FCFS 

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Highest response ratio first (HRRF) – Ci is known

Response ratio: 

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

Wi Ci+( ) Ci⁄
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Scheduling

Highest response ratio first (HRRF) – Ci is known

Response ratio:  

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

Wi Ci+( ) Ci⁄
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Scheduling

Highest response ratio first (HRRF) – Ci is known

Response ratio:  – Waiting time: 0…9; average: 4.11 – Turnaround time: 1…13; average 6.63

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

Wi Ci+( ) Ci⁄
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Scheduling

Highest response ratio first (HRRF) – Ci is known

Response ratio:  – Waiting time: 0…9; average: 4.11 – Turnaround time: 1…13; average 6.63

☞ on average this is doing worse than SJF, 
but the maximal waiting and turnaround times and variance might be reduced!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

Wi Ci+( ) Ci⁄
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Scheduling

Shortest remaining time first (SRTF) – Ci is known + pre-emption

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Shortest remaining time first (SRTF) – Ci is known + pre-emption

Waiting time: 0…6; average: 1.05 – Turnaround time: 1…18; average 4.42

☞ on average this is doing better than FCFS, SJF or HRRF, 
but the maximal turnaround time is going up and there are many task-switches!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Non-realtime scheduling methods

1 5 15 20 25 30 35 40 4510 50 t

FCFS

RR

FB 2i

SJF

HRRF

SRTF
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Scheduling

Non-realtime scheduling methods

☞ CPU utilization: 100% in all cases.

1 5 15 20 25 30 35 40 4510 50 t

FCFS

RR

FB 2i

SJF

HRRF

SRTF
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Scheduling

Non-realtime scheduling methods

☞ CPU utilization: 100% in all cases.

☞ Pre-emptive methods perform better, assuming that the overhead is negligible.

1 5 15 20 25 30 35 40 4510 50 t

FCFS

RR

FB 2i

SJF

HRRF

SRTF
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Scheduling

Non-realtime scheduling methods

☞ CPU utilization: 100% in all cases.

☞ Pre-emptive methods perform better, assuming that the overhead is negligible.

☞ Knowledge of  (computation times) has a significant impact on scheduler performance.

1 5 15 20 25 30 35 40 4510 50 t

FCFS

RR

FB 2i

SJF

HRRF

SRTF

Ci
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Non-realtime scheduling methods

Selection
Pre-

emption

Waiting Turnaround Preferred 
processes

Starvation 
possible? in high load situations

FCFS no possibly long possibly long long no

RR equal share yes bound possibly long none no

Feedback priority queues yes short on average
very short on aver-

age, large maximum
short yes

max Wi( )
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Non-realtime scheduling methods

Selection
Pre-

emption

Waiting Turnaround Preferred 
processes

Starvation 
possible? in high load situations

FCFS no possibly long possibly long long no

RR equal share yes bound possibly long none no

Feedback priority queues yes short on average
very short on aver-

age, large maximum
short yes

SJF no short on average short on average short yes

HRRF no
short on average, 

lower variance
short on average, 

lower variance

balanced, 
towards 

short
no

SRTF yes
very short 
on average

very short on aver-
age, large maximum

short yes

max Wi( )

min Ci( )

max
Wi Ci+

Ci
-------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

min Ci Ei–( )
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Predictable scheduling

Towards predictable scheduling …

☞ Task behaviours are more specified (restricted).

☞ Task requirements are more specific (time scopes).

☞ Task sets are often fully or mostly static.

☞ Sporadic and urgent requests (e.g. user interaction, alarms) need to be addressed.

¬ CPU-utilization and throughput (system oriented performance measures) are not important!
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Specifying timing requirements

Temporal scopes

Common attributes:
• Minimal & maximal 

delay after creation

• Maximal elapsed time

• Maximal execution time

• Absolute deadline
Task i

t1 5 20 25 3010

deadline

min. delay
max. delay

max. elapse time

created

max. exec. time
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Real-Time & Embedded SystemsConcurrent & Distributed Systems

Specifying timing requirements

Temporal scopes

Common attributes:
• Minimal & maximal 

delay after creation

• Maximal elapsed time

• Maximal execution time

• Absolute deadline
Task i

t1 5 20 25 3010

deadline

min. delay
max. delay

max. elapse time

activatedcreated

max. exec. time
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Specifying timing requirements

Temporal scopes

Common attributes:
• Minimal & maximal 

delay after creation

• Maximal elapsed time

• Maximal execution time

• Absolute deadline
Task i

t1 5 20 25 3010

deadline

min. delay
max. delay

activated

suspended

re-activated

terminated

created

elapse time

max. elapse time
max. exec. time
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Specifying timing requirements

Temporal scopes

Common attributes:
• Minimal & maximal 

delay after creation

• Maximal elapsed time

• Maximal execution time

• Absolute deadline
Task i

t1 5 20 25 3010

deadline

execution time

min. delay
max. delay

activated

suspended

re-activated

terminated

created

elapse time

max. elapse time
max. exec. time
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Specifying timing requirements

Some common scope attributes
Temporal Scopes can be:

Periodic – e.g. controllers, samplers, monitors

Aperiodic – e.g. ‘periodic on average’ tasks, burst requests

Sporadic / Transient – e.g. mode changes, occasional services
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Specifying timing requirements

Some common scope attributes
Temporal Scopes can be:

Deadlines (absolute, elapse, or execution time) can be:

Periodic – e.g. controllers, samplers, monitors

Aperiodic – e.g. ‘periodic on average’ tasks, burst requests

Sporadic / Transient – e.g. mode changes, occasional services

Hard – single failure leads to severe malfunction

Firm – results are meaningless after the deadline

– only multiple or permanent failures threaten the whole system
Soft

– results may still by useful after the deadline
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Real-Time & Embedded SystemsConcurrent & Distributed Systems

Specifying timing requirements

Some common scope attributes
Temporal Scopes can be:

Deadlines (absolute, elapse, or execution time) can be:

Periodic – e.g. controllers, samplers, monitors

Aperiodic – e.g. ‘periodic on average’ tasks, burst requests

Sporadic / Transient – e.g. mode changes, occasional services

Hard – single failure leads to severe malfunction

Firm – results are meaningless after the deadline

– only multiple or permanent failures threaten the whole system
Soft

– results may still by useful after the deadline

distinction is not so 
obvious in practical systems
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Predictable scheduling

A simple process model

• The number of processes in the system is fixed.

• All processes are periodic and all periods are known.

• All deadlines are identical with the process cycle times (periods).

• The worst case execution time is known for all processes.

• All processes are independent.

• All processes are released at once.

• The task-switching overhead is negligible.
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Predictable scheduling

A simple process model

• The number of processes in the system is fixed.

• All processes are periodic and all periods are known.

• All deadlines are identical with the process cycle times (periods).

• The worst case execution time is known for all processes.

• All processes are independent.

• All processes are released at once.

• The task-switching overhead is negligible.

☞ this model can only be applied to a very specific group of systems.
(more real-world extensions to this model will be discussed in other courses).
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Predictable scheduling

Introducing deadlines

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Dynamic scheduling

Earliest deadline first (EDF)
1. Determine (one of) the processe(s) with the closest deadline.

2. Execute this process 

2-a until it finishes 

2-b or until another process’ deadline is found closer than the current one.

☞ Pre-emptive scheme

☞ Dynamic scheme, 
since the dispatched process is selected at run-time, due to the current deadlines.
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Dynamic scheduling: Earliest Deadline First (EDF)

Earliest deadline first

1. Schedule the earliest deadline first

2. Avoid task switches (in case of equal deadlines)

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Real-Time & Embedded SystemsConcurrent & Distributed Systems

Dynamic scheduling: Earliest Deadline First (EDF)

Earliest deadline first

1. Schedule the earliest deadline first

2. Avoid task switches (in case of equal deadlines)

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Dynamic scheduling: Earliest Deadline First (EDF)

Earliest deadline first: Response times

worst case response times (maximal time in which the request from task  is served).

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

Ri Ti
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Dynamic scheduling: Earliest Deadline First (EDF)

Earliest deadline first: Response times

worst case response times (maximal time in which the request from task  is served): 

☞ can be close or identical to deadlines.

☞ small or none spare capacity, if any task misses its expected computation time.

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

R
RR

Ri Ti
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Dynamic scheduling: Earliest Deadline First (EDF)

Earliest deadline first: Maximal utilization

☞ maximal possible utilization:   ☞ sufficient & necessary test!

with  the computation and cycle times of task i
(the deadlines  are assumed to be identical with the cycles times  here)

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

Ci
Ti
------

i 1=

n

∑ 1≤

Ci Ti,
Di Ti
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Static scheduling

Fixed Priority Scheduling (FPS), rate monotonic
1. Each process is assigned a fixed priority according to its cycle time :

2. At any point in time: dispatch the process with the highest priority

☞ Pre-emptive scheme

☞ Static scheme, 
since the dispatch order of processes is fixed and calculated off-line.

Ti

Ti Tj< Pi Pj>⇒
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Static scheduling

Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic ordering is optimal 
(in the framework of fixed priority schedulers)

i.e. if a process set is schedulable under a FPS-scheme, 
then it is also schedulable by applying rate monotonic priorities.
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities

☞ assign task priorities according to the cycle times  (identical to deadline ).

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

Ti Di
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities

☞ assign task priorities according to the cycle times  (identical to deadline ).

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

3
2
1

Ti Di
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities

☞ assign task priorities according to the cycle times  (identical to deadline ).

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

3
2
1

Ti Di
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities

max. utilization test:           ☞ sufficient, but not necessary test!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

3
2
1

Ci
Ti
------

i 1=

n

∑ N 2

1
N
----

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≤
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities

utilization test:             ☞ not guaranteed!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

3
2
1

Ci
Ti
------

i 1=

n

∑ 1= 0.779 N 2

1
N
----

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≈>
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities (reduced requests)

max. utilization test: 

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,6)

3
2
1

Ci
Ti
------

i 1=

n

∑ N 2

1
N
----

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≤
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities (reduced requests)

☞ utilization: ;             ☞ not guaranteed!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,6)

3
2
1

6
16
------ 3

12
------ 1

4
---+ + 0.875= 0.779 3 2

1
3
---

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≈>
Ci
Ti
------

i 1=

n

∑ N 2

1
N
----

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≤
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities (reduced requests)

☞ utilization: ;             ☞ not guaranteed!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,6)

3
2
1

6
16
------ 3

12
------ 1

4
---+ + 0.875= 0.779 3 2

1
3
---

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≈>
Ci
Ti
------

i 1=

n

∑ N 2

1
N
----

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≤
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities (further reduced requests)

max. utilization test: 

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

3
2
1

Ci
Ti
------

i 1=

n

∑ N 2

1
N
----

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≤
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities (further reduced requests)

☞ utilization: ;             ☞ guaranteed!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

3
2
1

4
16
------ 3

12
------ 1

4
---+ + 0.75= 0.779 3 2

1
3
---

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≈≤
Ci
Ti
------

i 1=

n

∑ N 2

1
N
----

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≤
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities (further reduced requests)

☞ utilization: ;             ☞ guaranteed!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

3
2
1

4
16
------ 3

12
------ 1

4
---+ + 0.75= 0.779 3 2

1
3
---

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≈≤
Ci
Ti
------

i 1=

n

∑ N 2

1
N
----

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≤
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

☞ calculate the worst case response times for each task individually.

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

3
2
1
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

☞ for the highest priority task: 

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R3

3
2
1

R3 C3=
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

☞ for other tasks:  = computation  + interference 

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R1

3
2
1

Ri Ci Ii+= Ci Ii
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

for other tasks: 

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R1

3
2
1

Ri Ci
Ri

Tj
----- Cj

j i>
∑+=
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

☞ ; ;  and 

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R1

3
2
1

R3
R2

R3 1✔= R2 4✔= R1 10✔=
Ci

Ti
-----

i 1=

n

∑ N 2

1
N
----

1–
⎝ ⎠
⎜ ⎟
⎛ ⎞

✔≤
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (reduced requests)

☞ ; ;  but 

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,6)

R1

3
2
1

R3
R2

R3 1✔= R2 4✔= R1 12✔=
Ci

Ti
-----

i 1=

n

∑ N 2

1
N
----

1–
⎝ ⎠
⎜ ⎟
⎛ ⎞

✖>
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (full requests)

☞ ; ;  and 

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

3
2
1

R3 1✔= R2 4✔= R1 19✖=
Ci

Ti
-----

i 1=

n

∑ N 2

1
N
----

1–
⎝ ⎠
⎜ ⎟
⎛ ⎞

✖>
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Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis (full requests)

☞ testing all combinations in a hyper-period: LCM of  — here: 48

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

Ti{ }
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Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis (full requests)

☞ testing all combinations in a hyper-period: LCM of  — here: 48

:  = ;     :  = ;     :  =

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

R
R

R

Ti{ }

R 16 16✔≤ T R 12 12✔≤ T R 4 4✔≤ T
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Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis (reduced requests)

☞ relaxed task-set changes:

:  = ;     :  = ;     :  =

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,6)

R RR

R 16 12→ 16✔≤ T R 12 8→ 12✔≤ T R 4 1→ 4✔≤ T
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Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis (further reduced requests)

☞ further relaxed task-set changes:

:  = ;     :  = ;     :  =

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R RR

R 12 10→ 16✔≤ T R 8 6→ 12✔≤ T R 1 1→ 4✔≤ T
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Real-time scheduling

Response time analysis (comparison)

Fixed Priority Scheduling Earliest Deadline First

utilization 
test

response 
times 

utilization 
test

response 
times 

✖ (1.000) ✔ (1.000)

check full 
hyper-cycle

Ri{ } Ri{ }

Ti Ci,( ){ } 16 8,( ) 12 3,( ) 4 1,( );;{ }= ✖ 4 1, ,{ } 16 12 4, ,{ }

 

 

Ci
Ti
------

i 1=

n

∑ N 2

1
N
----

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≤ Ci
Ri
Tj
----- Cj

j i>
∑+

Ci
Ti
------

i 1=

n

∑ 1≤
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Real-time scheduling

Response time analysis (comparison)

Fixed Priority Scheduling Earliest Deadline First

utilization 
test

response 
times 

utilization 
test

response 
times 

✖ (1.000) ✔ (1.000)

✖ (0.875) ✔ (0.875)

check full 
hyper-cycle

Ri{ } Ri{ }

Ti Ci,( ){ } 16 8,( ) 12 3,( ) 4 1,( );;{ }= ✖ 4 1, ,{ } 16 12 4, ,{ }

Ti Ci,( ){ } 16 6,( ) 12 3,( ) 4 1,( );;{ }= 12 4 1, ,{ } 12 8 1, ,{ }

 

Ci
Ti
------

i 1=

n

∑ N 2

1
N
----

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≤ Ci
Ri
Tj
----- Cj

j i>
∑+

Ci
Ti
------

i 1=

n

∑ 1≤
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Real-time scheduling

Response time analysis (comparison)

Fixed Priority Scheduling Earliest Deadline First

utilization 
test

response 
times 

utilization 
test

response 
times 

✖ (1.000) ✔ (1.000)

✖ (0.875) ✔ (0.875)

✔ (0.750) ✔ (0.750)

check full 
hyper-cycle

Ri{ } Ri{ }

Ti Ci,( ){ } 16 8,( ) 12 3,( ) 4 1,( );;{ }= ✖ 4 1, ,{ } 16 12 4, ,{ }

Ti Ci,( ){ } 16 6,( ) 12 3,( ) 4 1,( );;{ }= 12 4 1, ,{ } 12 8 1, ,{ }

Ti Ci,( ){ } 16 4,( ) 12 3,( ) 4 1,( );;{ }= 10 4 1, ,{ } 10 6 1, ,{ }

Ci
Ti
------

i 1=

n

∑ N 2

1
N
----

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≤ Ci
Ri
Tj
----- Cj

j i>
∑+

Ci
Ti
------

i 1=

n

∑ 1≤
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Real-time scheduling

Fixed Priority Scheduling ↔ Earliest Deadline First

• EDF can handle higher (full) utilization than FPS.

• FPS is easier to implement and implies less run-time overhead

• Graceful degradation features (resource is over-booked):

• FPS: processes with lower priorities will always miss their deadlines first.
• EDF: any process can miss its deadline ☞ and can trigger a cascade of failed deadlines.

• Response time analysis and utilization tests:

• FPS: O(n) utilization test — response time analysis: fixed point equation
• EDS: O(n) utilization test — response time analysis: fixed point equation in hyper-cycle
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Selection
Pre-

emption
Waiting Turnaround

Preferred 
processes

Starvation 
possible?

FCFS no possibly long possibly long long no

RR equal share yes bound possibly long none no

Feedback priority queues yes short on average
very short on aver-

age, large maximum
short yes

SJF no short on average short on average short yes

HRRF no
short on average, 

lower variance
short on average, 

lower variance
balanced no

SRTF yes
very short 
on average

very short on aver-
age, large maximum

short yes

FPS yes priority based priority based
higher
priority

yes

EDF yes deadline based
often close 

to deadlines
most 

urgent
no

max Wi( )

min Ci( )

max Wi Ci+( ) Ci⁄( )

min Ci Ei–( )

max Pi( )

min Di( )
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Summary

Scheduling

• Basic performance based scheduling

•  is not known: first-come-first-served (FCFS), round robin (RR), 
and feedback-scheduling

•  is known: shortest job first (SJF), highest response ration first (HRRF), 
shortest remaining time first (SRTF)-scheduling

• Basic predictable scheduling

• Fixed Priority Scheduling (FPS) with Rate Monotonic (RMPO)
• Earliest Deadline First (EDF)

Ci

Ci
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Models and Terminology

Correctness in concurrent systems

Extended concepts of correctness in concurrent systems:

¬ Termination is often not intended or even considered a failure

• Safety properties:

where  means that  does always hold

• Liveness properties:

where  means that  does eventually hold (and will then stay true)
and  is the current state of the concurrent system

P I( ) Processes I S,( )∧( ) Q I S,( )⇒
Q Q

P I( ) Processes I S,( )∧( )  Q I S,( )◊⇒
 Q◊ Q

S



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 520 of 896 (Chapter 6: to 606)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Models and Terminology

Correctness in concurrent systems

• Liveness properties:

where  means that  does eventually hold (and will then stay true)

Examples:

• Requests need eventually to be completed

• The state of the system needs eventually be displayed to the outside

• No part of the system is to be delayed forever (fairness)

☞ Interesting liveness properties can be extremely hard to be proven

P I( ) Processes I S,( )∧( )  Q I S,( )◊⇒
 Q◊ Q
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Models and Terminology

one central liveness property: Fairness

• Liveness properties:

where  means that  does eventually hold (and will then stay true)

Fairness (as a means to avoid starvation):

P I( ) Processes I S,( )∧( )  Q I S,( )◊⇒
 Q◊ Q
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Models and Terminology

one central liveness property: Fairness

• Liveness properties:

where  means that  does eventually hold (and will then stay true)

Fairness (as a means to avoid starvation):

• Weak fairness:   
resource will eventually be granted, if a process requests continually

P I( ) Processes I S,( )∧( )  Q I S,( )◊⇒
 Q◊ Q

 R◊  G◊⇒
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Models and Terminology

one central liveness property: Fairness

• Liveness properties:

where  means that  does eventually hold (and will then stay true)

Fairness (as a means to avoid starvation):

• Weak fairness:   
resource will eventually be granted, if a process requests continually

• Strong fairness:    
resource will eventually be granted, if a process requests infinitely often

P I( ) Processes I S,( )∧( )  Q I S,( )◊⇒
 Q◊ Q

 R◊  G◊⇒

 Ri◊  G◊⇒
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Models and Terminology

one central liveness property: Fairness

• Liveness properties:

where  means that  does eventually hold (and will then stay true)

Fairness (as a means to avoid starvation):

• Weak fairness:   
resource will eventually be granted, if a process requests continually

• Strong fairness:    
resource will eventually be granted, if a process requests infinitely often

• Linear waiting: resource will be granted
                                    before any other process had the same resource granted more than once.

P I( ) Processes I S,( )∧( )  Q I S,( )◊⇒
 Q◊ Q

 R◊  G◊⇒

 Ri◊  G◊⇒
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Models and Terminology

one central liveness property: Fairness

• Liveness properties:

where  means that  does eventually hold (and will then stay true)

Fairness (as a means to avoid starvation):

• Weak fairness:   
resource will eventually be granted, if a process requests continually

• Strong fairness:    
resource will eventually be granted, if a process requests infinitely often

• Linear waiting:    resource will be granted
                                    before any other process had the same resource granted more than once.

• First-in, first-out:    resource will be granted 
                before any other process which applied for the same resource at a later point in time.

P I( ) Processes I S,( )∧( )  Q I S,( )◊⇒
 Q◊ Q

 R◊  G◊⇒

 Ri◊  G◊⇒
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Models and Terminology

Correctness in concurrent systems

• Safety properties:

where  means that  does always hold

Examples:

• Mutual exclusion (no resource collisions)

• Absence of deadlocks
(and other forms of ‘silent death’ and ‘freeze’ conditions)

• Specified responsiveness or free capabilities
(typical in real-time / embedded systems or server applications)

P I( ) Processes I S,( )∧( ) Q I S,( )⇒
Q Q
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Deadlocks

Synchronization may lead to

☞ DEADLOCKS
(avoidance / prevention of those is one central safety property)

… a closer look on deadlocks 
and what can be done about them …
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Deadlocks

Reserving resources in reverse order

var reserve_1, reserve_2: semaphore := 1;

process P1;
   statement X;

   wait (reserve_1);
   wait (reserve_2);
      statement Y; - employ resources
   signal (reserve_2);
   signal (reserve_1);

   statement Z;
end P1;

process P2;
   statement A;

   wait (reserve_2);
   wait (reserve_1);
      statement B; - employ resources
   signal (reserve_1);
   signal (reserve_2);

   statement C;
end P2;

Sequence of operations : 
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Deadlocks

Reserving resources in reverse order

var reserve_1, reserve_2: semaphore := 1;

process P1;
   statement X;

   wait (reserve_1);
   wait (reserve_2);
      statement Y; - employ resources
   signal (reserve_2);
   signal (reserve_1);

   statement Z;
end P1;

process P2;
   statement A;

   wait (reserve_2);
   wait (reserve_1);
      statement B; - employ resources
   signal (reserve_1);
   signal (reserve_2);

   statement C;
end P2;

Sequence of operations : [A | X] ➠ {[B ➠ Y] xor [Y ➠ B]} ➠ [C | Z]
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Deadlocks

Reserving resources in reverse order

var reserve_1, reserve_2: semaphore := 1;

process P1;
   statement X;

   wait (reserve_1);
   wait (reserve_2);
      statement Y; - employ resources
   signal (reserve_2);
   signal (reserve_1);

   statement Z;
end P1;

process P2;
   statement A;

   wait (reserve_2);
   wait (reserve_1);
      statement B; - employ resources
   signal (reserve_1);
   signal (reserve_2);

   statement C;
end P2;

Sequence of operations : [A | X] ➠ {[B ➠ Y] xor [Y ➠ B]} ➠ [C | Z]
or : [A | X] ➠ deadlocked!
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Deadlocks

Circular dependencies

var reserve_1, reserve_2, reserve_3: semaphore := 1;

process P1;
   statement X;

   wait (reserve_1);
   wait (reserve_2);
      statement Y;
   signal (reserve_2);
   signal (reserve_1);

   statement Z;
end P1;

process P2;
   statement A;

   wait (reserve_2);
   wait (reserve_3);
      statement B;
   signal (reserve_3);
   signal (reserve_2);

   statement C;
end P2;

process P3;
   statement K;

   wait (reserve_3);
   wait (reserve_1);
      statement L;
   signal (reserve_1);
   signal (reserve_3);

   statement M;
end P3;

Sequence of operations : [A | X | K] ➠ {[B ➠ Y➠ L] xor …} ➠ [C | Z | M]
or : [A | X | K] ➠ deadlocked!
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Deadlocks

Necessary deadlock conditions:
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Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion: 
resources cannot be used simultaneously
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Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion: 
resources cannot be used simultaneously

2. Hold and wait: 
a process applies for a resource, while it is holding another resource (sequential requests)
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Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion: 
resources cannot be used simultaneously

2. Hold and wait: 
a process applies for a resource, while it is holding another resource (sequential requests)

3. No pre-emption: 
resources cannot be pre-empted; only the process itself can release resources
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Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion: 
resources cannot be used simultaneously

2. Hold and wait: 
a process applies for a resource, while it is holding another resource (sequential requests)

3. No pre-emption: 
resources cannot be pre-empted; only the process itself can release resources

4. Circular wait: 
a ring list of processes exists, where every process waits for release of a resource by the next one
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Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion: 
resources cannot be used simultaneously

2. Hold and wait: 
a process applies for a resource, while it is holding another resource (sequential requests)

3. No pre-emption: 
resources cannot be pre-empted; only the process itself can release resources

4. Circular wait: 
a ring list of processes exists, where every process waits for release of a resource by the next one

☞ system may be deadlocked, if all these conditions apply!
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Deadlocks

Deadlock strategies:
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Deadlocks

Deadlock strategies:

1. Ignorance
☞ Kill unresponsive processes
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Deadlocks

Deadlock strategies:

1. Ignorance
☞ Kill unresponsive processes

2.Deadlock detection & recovery
☞ find deadlocked processes and recover the system in a coordinated way
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Deadlocks

Deadlock strategies:

1. Ignorance
☞ Kill unresponsive processes

2.Deadlock detection & recovery
☞ find deadlocked processes and recover the system in a coordinated way

3.Deadlock avoidance
☞ the resulting system state is checked before any resources are actually assigned
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Deadlocks

Deadlock strategies:

1. Ignorance
☞ Kill unresponsive processes

2.Deadlock detection & recovery
☞ find deadlocked processes and recover the system in a coordinated way

3.Deadlock avoidance
☞ the resulting system state is checked before any resources are actually assigned

4.Deadlock prevention
☞ the system prevents deadlocks by its structure
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Deadlocks

Deadlock prevention
(remove one of the four deadlock conditions)
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Deadlocks

Deadlock prevention
(remove one of the four deadlock conditions)

1. Mutual exclusion: 
Applicable to specific cases only; usually this can only be removed by replication of resources.
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Deadlocks

Deadlock prevention
(remove one of the four deadlock conditions)

1. Mutual exclusion: 
Applicable to specific cases only; usually this can only be removed by replication of resources.

2. Hold and wait: 
Processes are forced to allocate all their required resources at once, 
often at the time of admittance to the main dispatcher – done in many static realtime-systems.
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Deadlocks

Deadlock prevention
(remove one of the four deadlock conditions)

1. Mutual exclusion: 
Applicable to specific cases only; usually this can only be removed by replication of resources.

2. Hold and wait: 
Processes are forced to allocate all their required resources at once, 
often at the time of admittance to the main dispatcher – done in many static realtime-systems.

3. No pre-emption: 
If the current state of a resource can be stored and restored easily, then they can be pre-empted.
Usually resources are pre-empted from processes, which are currently not ready to run.
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Deadlocks

Deadlock prevention
(remove one of the four deadlock conditions)

1. Mutual exclusion: 
Applicable to specific cases only; usually this can only be removed by replication of resources.

2. Hold and wait: 
Processes are forced to allocate all their required resources at once, 
often at the time of admittance to the main dispatcher – done in many static realtime-systems.

3. No pre-emption: 
If the current state of a resource can be stored and restored easily, then they can be pre-empted.
Usually resources are pre-empted from processes, which are currently not ready to run.

4. Circular wait: 
A circular wait can be avoided by a global ordering of all resources, e.g. resources can only be 
requested in a specific order – hard to maintain in a dynamic system configuration.
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

 ; vertices and edges

 ; vertices are processes or resource types:

 ; processes

 ; resource types

 ; claims, requests and assignments

 ; claims

 ; requests

 ; assignments

Note: a resource may have more than one instance

Pi

Rj

Pi

Rj

Pi

Rj

holds

requests

claims

RAG V E,{ }=
V P R∪=

P P1 P2 … Pn, , ,{ }=
R R1 R2 …Rk, ,{ }=

E Er Ea Ec∪ ∪=

Ec Pi Rj …,→{ }=
Er Pi Rj …,→{ }=
Ea Ri Pj …,→{ }=
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

the two process, reverse allocation deadlock:
P1

R1

Rj

P2

R2
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Is this a deadlock situation? ☞
P1

R1

Rj

R3

P2

R2

P3
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

no, there is no circular dependency
P1

R1

Rj

R3

P2

R2

P3
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Is this a deadlock situation? ☞
P1

R1

Rj

R3

P2 P3

R2
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

yes, there are circular dependencies:

as well as: 

☞ IF some processes are deadlocked, THEN 
there are cycles in the resource allocation graph

P1

R1

Rj

R3

P2 P3

R2P1 R1 P2 R3 P3 R2 P1→ → → → → →

P2 R3 P3 R2 P2→ → → →
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Deadlocks

Edge Chasing
(Chandy, Misra & Haas ☞ distributed version)

• send probe containing three process id’s:

[the blocked, the sending, the receiving process]

P1

R1

Rj

R3

P2 P3

R2

 blocking process:∀
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Deadlocks

Edge Chasing
(Chandy, Misra & Haas ☞ distributed version)

• send probe containing three process id’s:

[the blocked, the sending, the receiving process]

• propagate the probe to the process holding the resource,
which this process requests 
(while updating the second and third proc.-id’s.)

P1

R1

Rj

R3

P2 P3

R2

 blocking process:∀

 blocked process receiving a probe:∀
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Deadlocks

Edge Chasing
(Chandy, Misra & Haas ☞ distributed version)

• send probe containing three process id’s:

[the blocked, the sending, the receiving process]

• propagate the probe to the process holding the resource,
which this process requests 
(while updating the second and third proc.-id’s.)

☞ possible deadlock detected!

P1

R1

Rj

R3

P2 P3

R2

 blocking process:∀

 blocked process receiving a probe:∀

 blocking process receiving its own probe:∀
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Assuming all claims of  are known in advance,

☞ Could the deadlock situation be avoided?

P1

R1

Rj

R3

P2 P3

R2

P3
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

yes, when resources are assigned so that there 
are no resulting circular dependencies:

☞ in this case: assign  to  (instead of )

P1

R1

Rj

R3

P2 P3

R2

R3 P2 P3
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

as well as: 

☞ ARE some processes deadlocked, IF 
there are cycles in the resource allocation graph?

P1

R1

Rj

R3

P2 P3

R2

P1 R1 P2 R3 P3 R2 P1→ → → → → →

P2 R3 P3 R2 P2→ → → →
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

yes, 
if there is only one instance per resource type:

☞ IF there are cycles in the 
resource allocation graph 

AND there is only one instance per resource type, 
THEN some processes are deadlocked!

P1

R1

Rj

P2

R2
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

no, 
if there is more than one instance 

per resource type:

☞ IF there are cycles in the 
resource allocation graph 

AND there is more than one instance per resource 
type, THEN some processes may be deadlocked!

P1

R1

Rj

R3

P2 P3

P4

R2



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 562 of 896 (Chapter 6: to 606)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

How to detect deadlocks 
in the general case?
(of multiple instances per resource)

P1

R1

Rj

R3

P2 P3

R2
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Deadlocks

Banker’s algorithm
There are   processes and  resource types in the system. Let  and :

•
☞ the number of resources of type  allocated by process .

•
☞ the number of available resources of type .

•
☞ the number of resources of type  required by process  to complete eventually.

•
☞ the number of currently requested resources of type  by process .

n m i 1…n∈ j 1…m∈

Allocated i j,[ ]
j i

Free j[ ]
j

Claimed i j,[ ]
j i

Request i j,[ ]
j i
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Deadlocks

Banker’s algorithm
There are   processes and  resource types in the system. Let  and :

•
☞ the number of resources of type  allocated by process .

•
☞ the number of available resources of type .

•
☞ the number of resources of type  required by process  to complete eventually.

•
☞ the number of currently requested resources of type  by process .

Temporary variables:

• : boolean vector indicating processes, which may complete right now.

• : available resources, if some processes complete and de-allocate.

n m i 1…n∈ j 1…m∈

Allocated i j,[ ]
j i

Free j[ ]
j

Claimed i j,[ ]
j i

Request i j,[ ]
j i

Completed i[ ]
Simulated_Free j[ ]
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Deadlocks

Banker’s algorithm
Checking for a deadlock situation

1. ; : Simulated_Free Free⇐ i∀ Completed i[ ] False⇐
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Deadlocks

Banker’s algorithm
Checking for a deadlock situation

1. ; : 

2.While : 
   and :  do: {request i can be granted}
 
           : 
           

Simulated_Free Free⇐ i∀ Completed i[ ] False⇐

i∃ Completed i[ ]¬
j∀ Requested i j,[ ] Simulated_Free j[ ]<

j∀ Simulated_Free j[ ] Simulated_Free j[ ] Allocated i j,[ ]+⇐
Completed i[ ] True⇐
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Deadlocks

Banker’s algorithm
Checking for a deadlock situation

1. ; : 

2.While : 
   and :  do: {request i can be granted}
 
           : 
           

3. If :  then the system is deadlock-free!
(otherwise all processes  with  are deadlocked)

Simulated_Free Free⇐ i∀ Completed i[ ] False⇐

i∃ Completed i[ ]¬
j∀ Requested i j,[ ] Simulated_Free j[ ]<

j∀ Simulated_Free j[ ] Simulated_Free j[ ] Allocated i j,[ ]+⇐
Completed i[ ] True⇐

i∀ Completed i[ ]
i Completed i[ ] False=
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Deadlocks

Banker’s algorithm
Checking the current system state

1. ; : 

2.While : 
   and :  do: {meaning process i can complete}
 
           : 
           

3. If :  then the system is safe!
(e.g. no process is currently deadlocked and no process can be deadlocked in any future state)

Simulated_Free Free⇐ i∀ Completed i[ ] False⇐

i∃ Completed i[ ]¬
j∀ Claimed i j,[ ] Simulated_Free j[ ]<

j∀ Simulated_Free j[ ] Simulated_Free j[ ] Allocated i j,[ ]+⇐
Completed i[ ] True⇐

i∀ Completed i[ ]
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Deadlocks

Banker’s algorithm

Checking the validity of a resource request

If (Request < Claimed) and (Request < Free) then

   Free      := Free      - Request;
   Claimed   := Claimed   - Request;
   Allocated := Allocated + Request;

   ☞ Apply system state check (as above)
   If System_is_safe then

      ☞ Actually grant request
   else
      -- restore former system state (Free, Claimed, Allocated)

   end if;
end if;
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Deadlocks

Deadlock detection / prevention
☞ Distributed version?



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 571 of 896 (Chapter 6: to 606)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Deadlock detection / prevention
☞ Distributed version?

• Most resources are assigned to a local group of processes.

☞ Split the system into nodes
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Deadlocks

Deadlock detection / prevention
☞ Distributed version?

• Most resources are assigned to a local group of processes.

☞ Split the system into nodes

☞ Organize them as hierarchical trees or other topologies



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 573 of 896 (Chapter 6: to 606)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Deadlock detection / prevention
☞ Distributed version?

• Most resources are assigned to a local group of processes.

☞ Split the system into nodes

☞ Organize them as hierarchical trees or other topologies

☞ Check for deadlocks locally 
☞ find local deadlocks immediately
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Deadlocks

Deadlock detection / prevention
☞ Distributed version?

• Most resources are assigned to a local group of processes.

☞ Split the system into nodes

☞ Organize them as hierarchical trees or other topologies

☞ Check for deadlocks locally 
☞ find local deadlocks immediately

☞ Exchange information about blocked tasks occasionally
☞ detect global deadlocks eventually

Menasce & Muntz – Ho & Ramamoorthy
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Deadlocks

Deadlock recovery

☞ Stop or restart one or multiple of the deadlocked processes and reclaim its resources

☞ Pre-empt one of the involved resources (and restore an earlier state of the victim process)
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Deadlocks

Deadlock recovery

☞ Stop or restart one or multiple of the deadlocked processes and reclaim its resources

☞ Pre-empt one of the involved resources (and restore an earlier state of the victim process)

Deadlock recovery does not deal with the source of the problem!
(the system may deadlock again right away)

☞ use deadlock prevention or deadlock avoidance instead
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Summary

Deadlocks
• Ignorance & recovery

• ☞ ‘kill some seemingly persistently blocked processes from time to time’ (exasperation)

• Deadlock detection & recovery

• ☞ multiple methods for detection, e.g. resource allocation graphs, Banker’s algorithm
• ☞ recovery is mostly ‘ugly’

• Deadlock avoidance

• ☞ check system safety before allocating resources, e.g. Banker’s algorithm

• Deadlock prevention

• ☞ eliminate one of the pre-conditions for deadlocks
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Failure modes

Terminology

Reliability ::= 
measure of success with which a system conforms to its specification

or
low failure rate.

Failure ::= deviation of a system from its specification
Error ::= system state which lead to failures
Fault ::= the reason for an error
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Failure modes

Faults on different levels

• Inconsistent or inadequate specification 

☞ frequent source for disastrous faults
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Failure modes

Faults on different levels

• Inconsistent or inadequate specification 

☞ frequent source for disastrous faults

• Software design errors

☞ frequent source for disastrous faults
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Failure modes

Faults on different levels

• Inconsistent or inadequate specification 

☞ frequent source for disastrous faults

• Software design errors

☞ frequent source for disastrous faults

• Component & communication system failures

☞ rare and mostly predictable
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Failure modes

Faults in the logic domain

• Non-termination / -completion

☞ systems frozen in a deadlock state, blocked for missing input, or in infinite loop
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Failure modes

Faults in the logic domain

• Non-termination / -completion

☞ systems frozen in a deadlock state, blocked for missing input, or in infinite loop

• Value overruns, other inconsistent states

☞ sometimes caught by the run-time environment
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Failure modes

Faults in the logic domain

• Non-termination / -completion

☞ systems frozen in a deadlock state, blocked for missing input, or in infinite loop

• Value overruns, other inconsistent states

☞ sometimes caught by the run-time environment

• Wrong results

☞ wrong implementation with respect to the specification
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Failure modes

Faults in the time domain

• Transient faults

☞ many communication system failures, electric interference, etc.
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Failure modes

Faults in the time domain

• Transient faults

☞ many communication system failures, electric interference, etc.

• Intermittent faults

☞ transient errors which occur more than once (e.g. overheating effects)
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Failure modes

Faults in the time domain

• Transient faults

☞ many communication system failures, electric interference, etc.

• Intermittent faults

☞ transient errors which occur more than once (e.g. overheating effects)

• Permanent faults

☞ stay in the system until they are repaired by some means
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Failure modes

Observable failures states

Failure modes

Time domain

fail
silent

fail
stop

fail
controlled

fail
uncontrolled

Value
error

Constraint
error

fail
never

too
early

too
late

never
(omission)

never
(omission)

Value domain
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Reliability

Fault prevention, avoidance, removal, …

and / or

☞ Fault tolerance
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Reliability

Fault tolerance
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Reliability

Fault tolerance
• Full fault tolerance

the system continues to operate in the presence of ‘foreseeable’ error conditions
without any significant failures — also this might induct a reduced operation period.
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Reliability

Fault tolerance
• Full fault tolerance

the system continues to operate in the presence of ‘foreseeable’ error conditions
without any significant failures — also this might induct a reduced operation period.

• Graceful degradation (fail soft)

the system continues to operate in the presence of ‘foreseeable’ error conditions,
accepting a partial loss of functionality or performance.
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Reliability

Fault tolerance
• Full fault tolerance

the system continues to operate in the presence of ‘foreseeable’ error conditions
without any significant failures — also this might induct a reduced operation period.

• Graceful degradation (fail soft)

the system continues to operate in the presence of ‘foreseeable’ error conditions,
accepting a partial loss of functionality or performance.

• Fail safe

the system halts and maintains its integrity
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Reliability

Fault tolerance
• Full fault tolerance

the system continues to operate in the presence of ‘foreseeable’ error conditions
without any significant failures — also this might induct a reduced operation period.

• Graceful degradation (fail soft)

the system continues to operate in the presence of ‘foreseeable’ error conditions,
accepting a partial loss of functionality or performance.

• Fail safe

the system halts and maintains its integrity

☞ Full fault tolerance is not maintainable for an infinite operation time!

☞ Graceful degradation might have multiple levels of reduced functionality.



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 595 of 896 (Chapter 6: to 606)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Atomic & idempotent operations

Atomic operations
Definitions given in different scenarios: 
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Atomic & idempotent operations

Atomic operations
Definitions given in different scenarios: 

An operation is atomic if the processes performing it …

• … are not aware of the existence of any other active process, 
and no other active process is aware of the activity of the processes 
during the time the processes are performing the action.
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Atomic & idempotent operations

Atomic operations
Definitions given in different scenarios: 

An operation is atomic if the processes performing it …

• … are not aware of the existence of any other active process, 
and no other active process is aware of the activity of the processes 
during the time the processes are performing the action.

• … do not communicate with other processes while the action is being performed.
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Atomic & idempotent operations

Atomic operations
Definitions given in different scenarios: 

An operation is atomic if the processes performing it …

• … are not aware of the existence of any other active process, 
and no other active process is aware of the activity of the processes 
during the time the processes are performing the action.

• … do not communicate with other processes while the action is being performed.

• … cannot detect any outside state change and 
do not reveal their own state changes until the action is complete.
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Atomic & idempotent operations

Atomic operations
Definitions given in different scenarios: 

An operation is atomic if the processes performing it …

• … are not aware of the existence of any other active process, 
and no other active process is aware of the activity of the processes 
during the time the processes are performing the action.

• … do not communicate with other processes while the action is being performed.

• … cannot detect any outside state change and 
do not reveal their own state changes until the action is complete.

☞ … can be considered to be indivisible and instantaneous.
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Atomic & idempotent operations

Atomic operations
Important implications: 
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Atomic & idempotent operations

Atomic operations
Important implications: 

☞ An atomic operation …

• … is either performed fully, or not at all.



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 602 of 896 (Chapter 6: to 606)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Atomic & idempotent operations

Atomic operations
Important implications: 

☞ An atomic operation …

• … is either performed fully, or not at all.

• … is declared as failed, if any part of the operation fails 
                                                                                           (and everything is reset to the original state).
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Atomic & idempotent operations

Atomic operations

Time-lines: 

1

3

Atomic

t1 5 15 20 25 30 35 40 4510

2

4
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Atomic & idempotent operations

Idempotent operations

Definition: 

An operation is idempotent if …

• … the observable effects of the operation are identical 
after executing it once and after executing it multiple times.
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Atomic & idempotent operations

Idempotent operations

Definition: 

An operation is idempotent if …

• … the observable effects of the operation are identical 
after executing it once and after executing it multiple times.

Observations:
• Idempotent operations are often atomic, but do not need to be.

• Atomic operations do not need to be idempotent.



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 606 of 896 (Chapter 6: to 606)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary 

Safety & Liveness
• Liveness

• Fairness

• Safety

• Deadlock detection
• Deadlock avoidance
• Deadlock prevention

• Failure modes

• Definitions, fault sources and basic fault tolerance

• Atomic & Idempotent operations

• Definitions & implications
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occam 2.1

William of Ockham (born at Ockham in Surrey (England) in 1280 and died in Munich in 1349):

• Philosopher and Franciscan monk

• Reasoning in the frame of the school of Nominalism: 

• … science has nothing to do directly with things, but only with concepts of them 
• … leading to the absolute subjectivity of all concepts and universals 

• Pioneer of modern Epistemology
(will also help to develop the concept of Phenomenology 500 years later)
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occam 2.1

William of Ockham (born at Ockham in Surrey (England) in 1280 and died in Munich in 1349):

• Philosopher and Franciscan monk

• Reasoning in the frame of the school of Nominalism: 

• … science has nothing to do directly with things, but only with concepts of them 
• … leading to the absolute subjectivity of all concepts and universals 

• Pioneer of modern Epistemology
(will also help to develop the concept of Phenomenology 500 years later)

• ‘Occam’s razor’: 

“Pluralitas non est ponenda sine neccesitate” 
or “plurality should not be posited without necessity”

(a common place in medieval philosophy)
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occam 2.1

Origins:
• EPL (Experimental Programming Language) by David May

• CSP (Communicating Sequential Processes) by Tony Hoare

• “Dijkstra-Style” programming

Goals:
• Minimalist approach (☞ Occam’s razor) supplying all means for:

☞ Concurrency & communication,
☞ Distributed systems

☞ Realtime / Predictable systems
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occam 2.1

Implementations:
• Transputer networks as an hardware implementation of the occam architecture 

(inmos, now SGS-Thomson)

• spoc (Southampton Portable occam Compiler)

• KRoC (Kent Retargetable Occam Compiler)

Historical:
• 1982: First conception

• 1992: occam 3 (draft)

• 1994: latest complete version: 2.1

Current state: academic (education)
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occam 2.1

Characteristics (... everything is a process):

• Primitive processes are 

• assignments
• input, or output statements (channel operations)
• SKIP, or STOP (elementary processes)

• Constructors are: 

• SEQ (sequence) + replication
• PAR (parallel) + replication
• ALT (alternation) + replication + priorities

• IF (conditional) + replication
• CASE (selection)
• WHILE (conditional loop)
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occam 2.1

Characteristics (… everything is a process and static):

☞ no dynamic process creation

☞ no unlimited recursion

Syntax structure:
• Indention is used block indication

(instead of ‘begin-end brackets’)

Scope of names:
• strictly local, indicated by indention

• no ‘forward declarations’, ‘exports’, ‘global variables’, or ‘shared memories’
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occam 2.1

An example

• use processes and channels
to implement a simple prime sieve

Starter

Sieve
[1]

3,5,7,…

Sieve
[2]

5,7,11,,…

Sieve
[3]

7,11,13,…

Printer

2

3

5

7

Sieve
[4]

11,13,17,…

Sieve
[5]

13,17,19,… Sieve
[6]

17,19,23,…

11 1713
Sieve

[7]

19,23,29,…

Sieve
[n]

…,…,…

Ender

19

…,…,…

…

…
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occam 2.1

VAL INT n IS 50: 
    -- # of primes to be generated

VAL INT limit is 1000: 
    -- range to check

[n-2] CHAN of INT link:  
    -- links between filters

[n-1] CHAN of INT prime: 
    -- channels to Print process

CHAN OF INT display: 
PLACE display AT 1:
    -- output display to device 1

Starter

Sieve
[1]

3,5,7,…

Sieve
[2]

5,7,11,,…

Sieve
[3]

7,11,13,…

Printer

2

3

5

7

Sieve
[4]

11,13,17,…

Sieve
[5]

13,17,19,… Sieve
[6]

17,19,23,…

11 1713
Sieve

[7]

19,23,29,…

Sieve
[n]

…,…,…

Ender

19

…,…,…

…

…
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occam 2.1

PROC Starter 
  (CHAN OF INT out, print)
    -- feed number into the chain

INT i:
  SEQ
    print ! 2  -- 2 is prime
    i := 3
    WHILE i < limit
      SEQ
        out ! i
        i := i + 2: 
            -- generate odd numbers

PROC Sieve 
  (CHAN OF INT in, out, print)
    -- filter out one prime

INT p, next: 
  SEQ
    in ? p 
    print ! p  -- p is prime
    WHILE TRUE
      SEQ
        in ? next
        IF 
          (next\p) <> 0 -- remainder?
            out ! next
          TRUE 
            SKIP
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occam 2.1

PROC Ender 
  (CHAN OF INT in, print)
    -- consume rest of numbers

INT p: 
  SEQ
    in ? p
    print ! p  -- p is prime
    WHILE TRUE
      in ? p:

PROC Printer ([] CHAN OF INT value)
    -- print each prime, in order

INT p: 
  SEQ i = 0 FOR SIZE value
    SEQ
      value [i] ? p
      display ! p:

PAR -- main program

  Starter (link [0], prime [0])
  PAR i = 1 FOR n-2
    Sieve (link [i-1], 
           link [i], 
           prime [i])
  Ender (link [n-1], prime [n-1])
  Printer (prime)
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occam 2.1 versus Ada95

occam 2.1 Ada95

Addressing: one-to-one many-to-one

message formats defined by: the channels’ profiles
the ‘accepting’ tasks’
parameter profiles

synchronization form: rendezvous

data-flow: one way
one way or two ways 

(extended rendezvous)

selection of open alternatives: non-deterministic

Processes: static dynamic

shared memory (‘monitors’): - yes
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Operating System based architectures

Hardware environments / configurations:

• stand-alone, universal, single-processor machines

• symmetrical multiprocessor-machines

• local distributed systems

• open, web-based systems

• dedicated/embedded computing
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Operating System based architectures

Hardware environments / configurations:

• stand-alone, universal, single-processor machines

• symmetrical multiprocessor-machines

• local distributed systems

• open, web-based systems

• dedicated/embedded computing

What is the common ground for operating systems?

What is an operating system?
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What is an operating system?

1. A virtual machine!
… offering a more comfortable, robust, reliable, flexible … machine
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What is an operating system?

1. A virtual machine!
… offering a more comfortable, robust, reliable, flexible … machine

Hardware

OS

Tasks

Typ. general OS

Hardware
RT-OS

Tasks

Typ. real-time system

Hardware

Tasks

Typ. embedded system

run-time
environment
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What is an operating system?

2. A resource manager!
… dealing with all sorts of devices and coordinating access
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What is an operating system?

2. A resource manager!
… dealing with all sorts of devices and coordinating access

Operating systems deal with

• processors,

• memory

• mass storage

• communication channels

• devices 
(timers, special purpose processors, interfaces, …)

☞ and many tasks/processes/programs, which are applying for access to these resources
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What is an operating system?

Is there a standard set of features for an operating system?
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What is an operating system?

Is there a standard set of features for an operating system?
☞ no, 

the term ‘operating systems’ covers 4KB kernels, 
as well as 1GB installations of general purpose OSs.
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What is an operating system?

Is there a standard set of features for an operating system?
☞ no, 

the term ‘operating systems’ covers 4KB kernels, 
as well as 1GB installations of general purpose OSs.

Is there a minimal set of features?
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What is an operating system?

Is there a standard set of features for an operating system?
☞ no, 

the term ‘operating systems’ covers 4KB kernels, 
as well as 1GB installations of general purpose OSs.

Is there a minimal set of features?
☞ almost,

memory management, process management and inter-process communication/synchronization 
will be considered essential in most systems.
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What is an operating system?

Is there a standard set of features for an operating system?
☞ no, 

the term ‘operating systems’ covers 4KB kernels, 
as well as 1GB installations of general purpose OSs.

Is there a minimal set of features?
☞ almost,

memory management, process management and inter-process communication/synchronization 
will be considered essential in most systems.

Is there always an explicit operating system?
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What is an operating system?

Is there a standard set of features for an operating system?
☞ no, 

the term ‘operating systems’ covers 4KB kernels, 
as well as 1GB installations of general purpose OSs.

Is there a minimal set of features?
☞ almost,

memory management, process management and inter-process communication/synchronization 
will be considered essential in most systems.

Is there always an explicit operating system?
☞ no, 

some languages and development systems operate with stand-alone run-time-environments.
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The evolution of operating systems

• in the beginning: single user, single program, single task, serial processing ☞ no OS
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The evolution of operating systems

• in the beginning: single user, single program, single task, serial processing ☞ no OS

• 50s: System monitors / batch processing
☞ the monitor ordered the sequence of jobs and triggered their sequential execution
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The evolution of operating systems

• in the beginning: single user, single program, single task, serial processing ☞ no OS

• 50s: System monitors / batch processing
☞ the monitor ordered the sequence of jobs and triggered their sequential execution

• 50s-60s: Advanced system monitors / batch processing:
☞ the monitor is handling interrupts and timers
☞ first support for memory protection
☞ first implementations of privileged instructions (accessible by the monitor only).
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The evolution of operating systems

• in the beginning: single user, single program, single task, serial processing ☞ no OS

• 50s: System monitors / batch processing
☞ the monitor ordered the sequence of jobs and triggered their sequential execution

• 50s-60s: Advanced system monitors / batch processing:
☞ the monitor is handling interrupts and timers
☞ first support for memory protection
☞ first implementations of privileged instructions (accessible by the monitor only).

• early 60s: Multiprogramming systems:
☞ employ the long device I/O delays for switches to other, runable programs
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The evolution of operating systems

• in the beginning: single user, single program, single task, serial processing ☞ no OS

• 50s: System monitors / batch processing
☞ the monitor ordered the sequence of jobs and triggered their sequential execution

• 50s-60s: Advanced system monitors / batch processing:
☞ the monitor is handling interrupts and timers
☞ first support for memory protection
☞ first implementations of privileged instructions (accessible by the monitor only).

• early 60s: Multiprogramming systems:
☞ employ the long device I/O delays for switches to other, runable programs

• early 60s: Multiprogramming, time-sharing systems:
☞ assign time-slices to each program and switch regularly
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The evolution of operating systems

• in the beginning: single user, single program, single task, serial processing ☞ no OS

• 50s: System monitors / batch processing
☞ the monitor ordered the sequence of jobs and triggered their sequential execution

• 50s-60s: Advanced system monitors / batch processing:
☞ the monitor is handling interrupts and timers
☞ first support for memory protection
☞ first implementations of privileged instructions (accessible by the monitor only).

• early 60s: Multiprogramming systems:
☞ employ the long device I/O delays for switches to other, runable programs

• early 60s: Multiprogramming, time-sharing systems:
☞ assign time-slices to each program and switch regularly

• early 70s: Multitasking systems – multiple developments resulting in UNIX (besides others)
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The evolution of operating systems

• in the beginning: single user, single program, single task, serial processing ☞ no OS

• 50s: System monitors / batch processing
☞ the monitor ordered the sequence of jobs and triggered their sequential execution

• 50s-60s: Advanced system monitors / batch processing:
☞ the monitor is handling interrupts and timers
☞ first support for memory protection
☞ first implementations of privileged instructions (accessible by the monitor only).

• early 60s: Multiprogramming systems:
☞ employ the long device I/O delays for switches to other, runable programs

• early 60s: Multiprogramming, time-sharing systems:
☞ assign time-slices to each program and switch regularly

• early 70s: Multitasking systems – multiple developments resulting in UNIX (besides others)

• early 80s: single user, single tasking systems, with emphasis on user interface (MacOS) or APIs.
MS-DOS, CP/M, MacOS and others first employed ‘small scale’ CPUs (personal computers).
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The evolution of operating systems

• in the beginning: single user, single program, single task, serial processing ☞ no OS

• 50s: System monitors / batch processing
☞ the monitor ordered the sequence of jobs and triggered their sequential execution

• 50s-60s: Advanced system monitors / batch processing:
☞ the monitor is handling interrupts and timers
☞ first support for memory protection
☞ first implementations of privileged instructions (accessible by the monitor only).

• early 60s: Multiprogramming systems:
☞ employ the long device I/O delays for switches to other, runable programs

• early 60s: Multiprogramming, time-sharing systems:
☞ assign time-slices to each program and switch regularly

• early 70s: Multitasking systems – multiple developments resulting in UNIX (besides others)

• early 80s: single user, single tasking systems, with emphasis on user interface (MacOS) or APIs.
MS-DOS, CP/M, MacOS and others first employed ‘small scale’ CPUs (personal computers).

• mid-80s: Distributed/multiprocessor operating systems - modern UNIX systems (SYSV, BSD)
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The evolution of communication systems

• 1901: first wireless data transmission (Morse-code from ships to shore)
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The evolution of communication systems

• 1901: first wireless data transmission (Morse-code from ships to shore)

• ‘56: first transmission of data through phone-lines
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The evolution of communication systems

• 1901: first wireless data transmission (Morse-code from ships to shore)

• ‘56: first transmission of data through phone-lines

• ‘62: first transmission of data via satellites (Telstar)
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The evolution of communication systems

• 1901: first wireless data transmission (Morse-code from ships to shore)

• ‘56: first transmission of data through phone-lines

• ‘62: first transmission of data via satellites (Telstar)

• ‘69: ARPA-net (predecessor of the current internet)
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The evolution of communication systems

• 1901: first wireless data transmission (Morse-code from ships to shore)

• ‘56: first transmission of data through phone-lines

• ‘62: first transmission of data via satellites (Telstar)

• ‘69: ARPA-net (predecessor of the current internet)

• 80s: introduction of fast local networks (LANs): ethernet, token-ring
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The evolution of communication systems

• 1901: first wireless data transmission (Morse-code from ships to shore)

• ‘56: first transmission of data through phone-lines

• ‘62: first transmission of data via satellites (Telstar)

• ‘69: ARPA-net (predecessor of the current internet)

• 80s: introduction of fast local networks (LANs): ethernet, token-ring

• 90s: mass introduction of wireless networks (LAN and WAN)
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The evolution of communication systems

• 1901: first wireless data transmission (Morse-code from ships to shore)

• ‘56: first transmission of data through phone-lines

• ‘62: first transmission of data via satellites (Telstar)

• ‘69: ARPA-net (predecessor of the current internet)

• 80s: introduction of fast local networks (LANs): ethernet, token-ring

• 90s: mass introduction of wireless networks (LAN and WAN)

Currently: standard consumer computers come with 

• High speed network connectors (e.g. GB-ethernet)
• Wireless LAN (e.g. IEEE802.11g)
• Local device bus-system (e.g. firewire)
• Wireless local device network (e.g. bluetooth)
• Infrared communication (e.g. IrDA)
• Modem/ADSL
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Types of current operating systems

Personal computing systems, workstations, and workgroup servers:
• late 70s: Workstations starting by porting UNIX or VMS to ‘smaller’ computers.

• 80s: PCs starting with almost none of the classical OS-features and services, 
but with an user-interface (MacOS) and simple device drivers (MS-DOS)
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Types of current operating systems

Personal computing systems, workstations, and workgroup servers:
• late 70s: Workstations starting by porting UNIX or VMS to ‘smaller’ computers.

• 80s: PCs starting with almost none of the classical OS-features and services, 
but with an user-interface (MacOS) and simple device drivers (MS-DOS)

☞ last 20 years: evolving and expanding into current general purpose OSs: 

• Solaris (based on SVR4, BSD, and SunOS)
• LINUX (open source UNIX re-implementation for x86 processors and others)
• current Windows (proprietary, partly based on Windows NT, which is ‘related’ to VMS)
• MacOS X (Mach kernel with BSD Unix and an proprietary user-interface)



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 649 of 896 (Chapter 7: to 691)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Types of current operating systems

Personal computing systems, workstations, and workgroup servers:
• late 70s: Workstations starting by porting UNIX or VMS to ‘smaller’ computers.

• 80s: PCs starting with almost none of the classical OS-features and services, 
but with an user-interface (MacOS) and simple device drivers (MS-DOS)

☞ last 20 years: evolving and expanding into current general purpose OSs: 

• Solaris (based on SVR4, BSD, and SunOS)
• LINUX (open source UNIX re-implementation for x86 processors and others)
• current Windows (proprietary, partly based on Windows NT, which is ‘related’ to VMS)
• MacOS X (Mach kernel with BSD Unix and an proprietary user-interface)

• Multiprocessing is supported by all these OSs to some extend.

• None of these OSs are suitable for embedded systems, also trials have been performed.

• None of these OSs are suitable for distributed or real-time systems.



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 650 of 896 (Chapter 7: to 691)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Types of current operating systems

Parallel operating systems

• support for a large number of processors, either:

• symmetrical:
each CPU has a full copy of the operating system

or
• asymmetrical:

only one CPU carries the full operating system, 
the others are operated by small operating system stubs to transfer code or tasks.
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Types of current operating systems

Distributed operating systems

• all CPUs carry a small kernel operating system for communication services.

• all other OS-services are distributed over available CPUs

• services may migrate

• services can be multiplied in order to 

• guarantee availability (hot stand-by)
• or to increase throughput (heavy duty servers)
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Types of current operating systems

Real-time operating systems

• Fast context switches?

• Small size? 

• Quick responds to external interrupts? 

• Multitasking?

• ‘low level’ programming interfaces?

• Interprocess communication tools? 

• High processor utilization? 



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 653 of 896 (Chapter 7: to 691)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Types of current operating systems

Real-time operating systems

• Fast context switches? ☞ should be fast anyway

• Small size? ☞ should be small anyway

• Quick responds to external interrupts? ☞ not ‘quick’, but predictable

• Multitasking? ☞ real time systems are often multitasking systems

• ‘low level’ programming interfaces? ☞ needed in many operating systems

• Interprocess communication tools? ☞ needed in almost all operating systems

• High processor utilization? ☞ fault tolerance builds on redundancy!
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Types of current operating systems

Real-time operating systems requesting …

☞ the logical correctness of the results as well as

☞ the correctness of the time, when the results are delivered

☞ Predictability!
(not performance!)

☞ All results are to be delivered just-in-time – not too early, not too late.

Timing constraints are specified in many different ways …
… often as a response to ‘external’ events ☞ reactive systems
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Types of current operating systems

Embedded operating systems

• usually real-time systems, often hard real-time systems

• very small footprint (often a few KBs)

• none or limited user-interaction

☞ 90-95% of all processors are working here!
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Typical structures of operating systems

‘Monolithic’ or ‘the big mess’
• non-portable

• hard to maintain

• lacks reliability

• all services are in the kernel (on the same privilege level)

☞ may reach very high efficiency

Hardware

OS

Tasks

Monolithic

APIs
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Typical structures of operating systems

‘Monolithic’ or ‘the big mess’
• non-portable

• hard to maintain

• lacks reliability

• all services are in the kernel (on the same privilege level)

☞ may reach very high efficiency

e.g. most early UNIX implementations (70s), 
MS-DOS (80s), Windows (basically all versions besides NT and NT-based editions), 
MacOS (until version 9), … and many others …

Hardware

OS

Tasks

Monolithic

APIs
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Typical structures of operating systems

‘Monolithic & modular’
• Modules can be platform independent

• Easier to maintain and to develop

• Reliability is increased

• all services are still in the kernel (on the same privilege level)

☞ may reach very high efficiency

Hardware

OS

Tasks

Modular

APIs

M1 M1 Mn…
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Typical structures of operating systems

‘Monolithic & modular’
• Modules can be platform independent

• Easier to maintain and to develop

• Reliability is increased

• all services are still in the kernel (on the same privilege level)

☞ may reach very high efficiency

e.g. current LINUX versions

Hardware

OS

Tasks

Modular

APIs

M1 M1 Mn…
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Typical structures of operating systems

‘Monolithic & layered’
• easily portable

• significantly easier to maintain

• crashing layers do not necessarily stop the whole OS

• possibly reduced efficiency through many interfaces

• rigorous implementation of the stacked virtual machine perspective
on OSs Hardware

Tasks

Layered

M0

M1

Mn
OS

APIs

…

layers
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Typical structures of operating systems

‘Monolithic & layered’
• easily portable

• significantly easier to maintain

• crashing layers do not necessarily stop the whole OS

• possibly reduced efficiency through many interfaces

• rigorous implementation of the stacked virtual machine perspective
on OSs

e.g. some current UNIX implementations (e.g. Solaris) to a certain degree, 
many research OSs (e.g. ‘THE system’, Dijkstra ‘68)

Hardware

Tasks

Layered

M0

M1

Mn
OS

APIs

…

layers
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Typical structures of operating systems

‘µkernels and virtual machines’
• µkernel implements essential 

process, memory, and message handling

• all ‘higher’ services are dealt with outside the 
kernel ☞ no threat for the kernel stability

• significantly easier to maintain

• multiple OSs can be executed at the same time

• µkernel is highly hardware dependent 
☞ only the µkernel need to be ported.

• possibly reduced efficiency through increased 
communications

Hardware

µkernel, virtual machine

µkernel

Tasks

M0

M1

Mn
OS

APIs

…

layersOS

Tasks

APIs

M1 M1 Mn…OS

Tasks

APIs
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Typical structures of operating systems

‘µkernels and virtual machines’
• µkernel implements essential 

process, memory, and message handling

• all ‘higher’ services are dealt with outside the 
kernel ☞ no threat for the kernel stability

• significantly easier to maintain

• multiple OSs can be executed at the same time

• µkernel is highly hardware dependent 
☞ only the µkernel need to be ported.

• possibly reduced efficiency through increased 
communications

e.g. wide spread concept: as early as the CP/M, VM/370 (‘79) 
or as recent as MacOS X (mach kernel + BSD unix)

Hardware

µkernel, virtual machine

µkernel

Tasks

M0

M1

Mn
OS

APIs

…

layersOS

Tasks

APIs

M1 M1 Mn…OS

Tasks

APIs
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Typical structures of operating systems

‘µkernels and client-server models’
• µkernel implements essential 

process, memory, and message handling

• all ‘higher’ services are user-level servers

• kernel ensures the reliable message passing 
between clients and servers

• highly modular and flexible

• servers can be redundant and easily replaced

• possibly reduced efficiency through increased
communications

Hardware

µkernel, client server structure

µkernel

service mservice 1task 1 task n
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Typical structures of operating systems

‘µkernels and client-server models’
• µkernel implements essential 

process, memory, and message handling

• all ‘higher’ services are user-level servers

• kernel ensures the reliable message passing 
between clients and servers

• highly modular and flexible

• servers can be redundant and easily replaced

• possibly reduced efficiency through increased
communications

e.g. current µkernel research projects

Hardware

µkernel, client server structure

µkernel

service mservice 1task 1 task n
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Typical structures of operating systems

‘µkernels and distributed systems’
• µkernel implements essential 

process, memory, and message handling

• all ‘higher’ services are user-level servers

• kernel ensures reliable message passing 
between clients and servers: 
locally and via a communication system

• highly modular and flexible

• servers can be redundant and easily replaced

• possibly reduced efficiency through increased
communications

µkernel, distributed systems

task 1 task n service 1

µkernel µkernel

service m

µkernel

Hardware

Network
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Typical structures of operating systems

‘µkernels and distributed systems’
• µkernel implements essential 

process, memory, and message handling

• all ‘higher’ services are user-level servers

• kernel ensures reliable message passing 
between clients and servers: 
locally and via a communication system

• highly modular and flexible

• servers can be redundant and easily replaced

• possibly reduced efficiency through increased
communications

e.g. Java engines, 
distributed real-time operating systems, current distributed OSs research projects

µkernel, distributed systems

task 1 task n service 1

µkernel µkernel

service m

µkernel

Hardware

Network
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UNIX

UNIX features
• Hierarchical file-system (maintained via ‘mount’ and ‘unmount’)
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UNIX

UNIX features
• Hierarchical file-system (maintained via ‘mount’ and ‘unmount’)

• Universal file-interface applied to files, devices (I/O), as well as IPC
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UNIX

UNIX features
• Hierarchical file-system (maintained via ‘mount’ and ‘unmount’)

• Universal file-interface applied to files, devices (I/O), as well as IPC

• Dynamic process creation via duplication
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• Hierarchical file-system (maintained via ‘mount’ and ‘unmount’)

• Universal file-interface applied to files, devices (I/O), as well as IPC

• Dynamic process creation via duplication

• Choice of shells

• Internal structure as well as all APIs are based on ‘C’
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• Hierarchical file-system (maintained via ‘mount’ and ‘unmount’)

• Universal file-interface applied to files, devices (I/O), as well as IPC

• Dynamic process creation via duplication

• Choice of shells

• Internal structure as well as all APIs are based on ‘C’

• Relatively high degree of portability
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UNIX

UNIX features
• Hierarchical file-system (maintained via ‘mount’ and ‘unmount’)

• Universal file-interface applied to files, devices (I/O), as well as IPC

• Dynamic process creation via duplication

• Choice of shells

• Internal structure as well as all APIs are based on ‘C’

• Relatively high degree of portability

☞ UNICS, UNIX, BSD, XENIX, System V, QNX, IRIX, SunOS, Ultrix, Sinix,
Mach, Plan 9, NeXTSTEP, AIX, HP-UX, Solaris, NetBSD, FreeBSD, Linux,
OPENSTEP, OpenBSD, Darwin, QNX/Neutrino, OS X, QNX RTOS, … … …
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UNIX

Dynamic process creation
pid = fork ();

resulting in a duplication of the current process

• returning 0 to the newly created process (the ‘child’ process)

• returning the process id of the child process to the creating process (the ‘parent’ process) 
or -1 for a failure
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UNIX

Dynamic process creation
pid = fork ();

resulting in a duplication of the current process

• returning 0 to the newly created process (the ‘child’ process)

• returning the process id of the child process to the creating process (the ‘parent’ process) 
or -1 for a failure

Frequent usage:
if (fork () == 0) {
… the child’s task … 
… often implemented as: exec (“absolute path to executable file“, “args“);
exit (0);              /* terminate child process */

} else {
… the parent’s task …
pid = wait ();          /* wait for the termination of one child process */

}



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 677 of 896 (Chapter 7: to 691)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

UNIX

Synchronization in UNIX ☞ Signals

#include <unistd.h>
#include <sys/types.h>
#include <signal.h>

pid_t id;

void catch_stop (int sig_num)
{

/* do something with the signal */
}

id = fork ();

if (id == 0) {

signal (SIGSTOP, catch_stop); 
pause ();
exit (0);

}

} else {

kill (id, SIGSTOP); 
pid = wait ();

}
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UNIX

Message passing in UNIX ☞ Pipes
int data_pipe [2], c, rc;

if (pipe (data_pipe) == -1) {
perror (“no pipe“); exit (1);

}

if (fork () == 0) {
close (data_pipe [1]);
while ((rc = read 
(data_pipe [0], &c, 1)) > 0) {
putchar (c);

}
if (rc == -1) {
perror (“pipe broken“); 
close (data_pipe [0]);
exit (1);

}
close (data_pipe [0]); exit (0);

} else {

close (data_pipe [0]);
while ((c = getchar ()) > 0) {
if (write 
(data_pipe[1], &c, 1) == -1) {
perror (“pipe broken“); 
close (data_pipe [1]); 
exit (1);

};
}
close (data_pipe [1]); 
pid = wait ();

}
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UNIX

Processes & IPC in UNIX
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UNIX

Processes & IPC in UNIX
Processes:

• Process creation results in a duplication of address space (‘copy-on-write’ becomes necessary)

☞ inefficient, but can generate new tasks out of any user process – no shared memory!
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Processes & IPC in UNIX
Processes:

• Process creation results in a duplication of address space (‘copy-on-write’ becomes necessary)

☞ inefficient, but can generate new tasks out of any user process – no shared memory!

Signals:
• limited information content, no buffering, no timing assurances (signals are not interrupts!)

☞ very basic, yet not very powerful form of synchronization
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UNIX

Processes & IPC in UNIX
Processes:

• Process creation results in a duplication of address space (‘copy-on-write’ becomes necessary)

☞ inefficient, but can generate new tasks out of any user process – no shared memory!

Signals:
• limited information content, no buffering, no timing assurances (signals are not interrupts!)

☞ very basic, yet not very powerful form of synchronization

Pipes:
• unstructured byte-stream communication, access is identical to file operations

☞ not sufficient to design client-server architectures or network communications
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UNIX

Sockets in BSD UNIX (also in System V.R4)

Sockets try to keep the paradigm of a universal file interface for everything and introduce:
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UNIX

Sockets in BSD UNIX (also in System V.R4)

Sockets try to keep the paradigm of a universal file interface for everything and introduce:

Connectionless interfaces (e.g. UDP/IP):
• Server side: socket ➠ bind ➠ recvfrom ➠ close

• Client side: socket ➠ sendto ➠ close
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UNIX

Sockets in BSD UNIX (also in System V.R4)

Sockets try to keep the paradigm of a universal file interface for everything and introduce:

Connectionless interfaces (e.g. UDP/IP):
• Server side: socket ➠ bind ➠ recvfrom ➠ close

• Client side: socket ➠ sendto ➠ close

Connection oriented interfaces (e.g. TCP/IP):
• Server side: socket ➠ bind ➠ {select} [connect | listen ➠ accept
                                   ➠ read | write ➠ [close | shutdown]

• Client side: socket ➠ bind ➠ connect               ➠ write | read ➠ [close | shutdown]
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POSIX

Portable Operating System Interface 
for Computing Environments

• IEEE/ANSI Std 1003.1 and following

• Program Interface (API) [C Language]

• more than 30 different POSIX standards
(a system is ‘POSIX compliant’, if it implements parts of just one of them!)
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POSIX – some of the real-time relevant standards

1003.1
12/01

OS Definition
single process, multi process, job control, signals, user groups, file system, file attributes, file 
device management, file locking, device I/O, device-specific control, system database, pipes, 
FIFO, …

1003.1b
10/93

Real-time 
Extensions

real-time signals, priority scheduling, timers, asynchronous I/O, prioritized I/O, synchronized 
I/O, file sync, mapped files, memory locking, memory protection, message passing, sema-
phore, …

1003.1c
6/95

Threads
multiple threads within a process; includes support for: thread control, thread attributes, pri-
ority scheduling, mutexes, mutex priority inheritance, mutex priority ceiling, and condition 
variables

1003.1d
10/99

Additional Real-
time Extensions

new process create semantics (spawn), sporadic server scheduling, execution time monitor-
ing of processes and threads, I/O advisory information, timeouts on blocking functions, de-
vice control, and interrupt control

1003.1j
1/00

Advanced Real-
time Extensions

typed memory, nanosleep improvements, barrier synchronization, reader/writer locks, spin 
locks, and persistent notification for message queues

1003.21
-/-

Distributed 
Real-time

buffer management, send control blocks, asynchronous and synchronous operations, 
bounded blocking, message priorities, message labels, and implementation protocols
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POSIX – 1003.1b

Frequently employed POSIX features include:
• Threads: a common interface to threading - differences to ‘classical UNIX processes’

• Timers: delivery is accomplished using POSIX signals

• Priority scheduling: fixed priority, 32 priority levels

• Real-time signals: signals with multiple levels of priority

• Semaphore: named semaphore

• Memory queues: message passing using named queues

• Shared memory: memory regions shared between multiple processes

• Memory locking: no virtual memory swapping of physical memory pages
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POSIX – other languages

POSIX is a ‘C’ standard …
… but bindings to other languages are also (suggested) POSIX standards:

• Ada: 1003.5*, 1003.24 (some PAR approved only, some withdrawn)

• Fortran: 1003.9 (6/92)

• Fortran90: 1003.19 (withdrawn)
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POSIX – other languages

POSIX is a ‘C’ standard …
… but bindings to other languages are also (suggested) POSIX standards:

• Ada: 1003.5*, 1003.24 (some PAR approved only, some withdrawn)

• Fortran: 1003.9 (6/92)

• Fortran90: 1003.19 (withdrawn)

… and there are POSIX standards for task-specific POSIX profiles, e.g.:

• Super computing: 1003.10 (6/95)

• Realtime: 1003.13, 1003.13b (3/98) 

- profiles 51-54: combinations of the above RT-relevant POSIX standards ☞ RT-Linux

• Embedded Systems: 1003.13a (PAR approved only)
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Summary 

Architectures

• Academic

• occam 2.1, CSP, …

• Workfloor

• Ada95, Java, …

• Environments / Operating Systems

• Operating systems architectures
• UNIX as a concept and basic UNIX features
• POSIX
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Network protocols & standards

OSI network reference model
• Standardized as the 

Open Systems Interconnection (OSI) reference model 
by the International Standardization Organization (ISO) in 1977

• 7 layer architecture

• Connection oriented
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Network protocols & standards

OSI network reference model
• Standardized as the 

Open Systems Interconnection (OSI) reference model 
by the International Standardization Organization (ISO) in 1977

• 7 layer architecture

• Connection oriented

Hardy implemented anywhere as such … 



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 696 of 896 (Chapter 8: to 883)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

OSI network reference model
• Standardized as the 

Open Systems Interconnection (OSI) reference model 
by the International Standardization Organization (ISO) in 1977

• 7 layer architecture

• Connection oriented

Hardy implemented anywhere as such … 

…but its concepts and terminology are widely used, 
when designing new protocols …
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Network protocols & standards

1: Physical Layer

• Service: Transmission of a raw bit stream over a communication channel

• Functions: Conversion of bits into electrical or optical signals

• Examples: X.21, Ethernet (cable, detectors & amplifiers)
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Network protocols & standards

2: Data Link Layer

• Service: Reliable transfer of frames over a link

• Functions: Synchronization, error correction, flow control

• Examples: HDLC (high level data link control protocol), LAP-B (link access procedure,

balanced), LAP-D (link access procedure, D-channel), LLC (link level control), …
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Network protocols & standards

3: Network Layer

• Service: Transfer of packets inside the network

• Functions: Routing, addressing, switching, congestion control

• Examples: IP, X.25
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Network protocols & standards

4: Transport Layer

• Service: Transfer of data between hosts

• Functions: Connection establishment, management, termination, flow
control, multiplexing, error detection

• Examples: TCP, UDP, ISO TP0-TP4
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Network protocols & standards

5: Session Layer

• Service: Coordination of the dialogue between application programs

• Functions: Session establishment, management, termination

• Examples: RPC
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Network protocols & standards

6: Presentation Layer

• Service: Provision of platform independent coding and encryption

• Functions: Code conversion, encryption, virtual devices

• Examples: ISO code
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Network protocols & standards

7: Application Layer

• Service: Network access to application programs

• Functions: application specific

• Examples: APIs for mail, ftp, ssh, scp, …
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Network protocols & standards

Ethernet / IEEE 802.3

• local area network (LAN) developed by Xerox in the 70’s

• 10 Mbps specification 1.0 by DEC, Intel, & Xerox in 1980

• specified by the IEEE 802.3 standard in 1983

• 10Mbps - 1 Gbps (10Gbps in preparation)

• approx. 85% of current LAN lines worldwide

☞ Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
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Network protocols & standards
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OSI reference model classification
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Network protocols & standards

Ethernet
MAC & PHY layer
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Network protocols & standards

Token Ring / IEEE 802.5

• Developed by IBM in the 70’s

• IEEE 802.5 standard is modelled after the IBM Token Ring architecture
(specifications are slightly different, but basically compatible)

• IBM Token Ring requests are star topology as well as twisted pair cables,
while IEEE 802.5 is unspecified in topology and medium

☞ Unlike CSMA/CD, the token ring is deterministic 
(with respect to its timing behaviour)
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Network protocols & standards

Token Ring / IEEE 802.5
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Network protocols & standards

Fiber Distributed Data Interface (FDDI)

• Designed in the 80’s as a standard for ‘backbone networks’

• American National Standards Institute (ANSI) X3T9.5 standard

• 100Mbps token passing, dual ring local area network 
using fiber optical cable (or copper in case of CDDI)

• Second ring is idle in normal operations

☞ Deterministic and Failure resistant
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Network protocols & standards

FDDI / ANSI X3T9.5
OSI reference model classification
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Network protocols & standards
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Network protocols & standards
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“normal configuration”

A

B

Station 4

Station 3

Station 2

BA

B

A

B

A

Failed station

Station 1 

Optical bypass switch
“bypassed configuration”

Ring does not wrap

AB

Station failure tolerance
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☞ finally: distribution!

What are potential benefits?

• Fits an existing physical distribution (e-mail system, devices in a large aeroplane, …).

• Possible high performance due to potentially high degree of parallel computing.

• Possible high reliability due to redundancy of hardware and software.

• Possible scalability.

• Integration of a large number of heterogeneous nodes/devices tailored to specific needs.
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What can be distributed?

• State ☞ common methods on distributed databases, e-mail

• Function ☞ distributed methods on central data

• State & Function ☞ client/server clusters

• none of those ☞ pure replication, redundancy
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Common design criteria

☞ Achieve decoupling / high degree of local autonomy

☞ Cooperation rather than central control

☞ Consider reliability

☞ Consider scalability

☞ Consider performance
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Common phenomena in distributed systems

1.Unpredictable delays (communication)

• Are we done yet?
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Common phenomena in distributed systems

1.Unpredictable delays (communication)

• Are we done yet?

2.Missing or imprecise time-base

• Was there a causal relation?

• Was there a temporal relation?
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Common phenomena in distributed systems

1.Unpredictable delays (communication)

• Are we done yet?

2.Missing or imprecise time-base

• Was there a causal relation?

• Was there a temporal relation?

3.Partial failures

• Likelihood of individual failures increases

• Likelihood of complete failure decreases (in case of a good design)
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Time in distributed systems

Two principle alternative strategies:

☞ Synchronize clocks

☞ Create a virtual time
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‘Real-time’ clocks in computer systems
are:

• discrete, i.e. time is not ‘dense’, there is a minimal granularity

• drift affected

1

1

t: ‘real’ time

C: measured time
ideal clock

clock affected by max drift δ

1 δ+( ) 1–
C t2( ) C t1( )–

t2 t1–
---------------------------------- 1 δ+( )≥ ≥

δ
δ
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Synchronize local, drift affected clocks (both ways)

sync.

t: ‘real’ time

clock affected by max drift δ

C: measured time

sync.

central clock

sync.
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Synchronize local, drift affected clocks (forward only)

sync.

t: ‘real’ time

clock affected by max drift δ

C: measured time

sync.

central clock

sync.
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Distributed critical regions with synchronized clocks
1. Create  and attach current time-stampOwnRequest
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Distributed critical regions with synchronized clocks
1. Create  and attach current time-stamp

2. Add  to local  (ordered by time)
Send  to all processes

OwnRequest

OwnRequest RequestQueue
OwnRequest
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Distributed critical regions with synchronized clocks
1. Create  and attach current time-stamp

2. Add  to local  (ordered by time)
Send  to all processes

3. Delay  ( being the time it takes for a message to reach all network nodes)

OwnRequest

OwnRequest RequestQueue
OwnRequest

2L L
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Distributed critical regions with synchronized clocks
1. Create  and attach current time-stamp

2. Add  to local  (ordered by time)
Send  to all processes

3. Delay  ( being the time it takes for a message to reach all network nodes)

4. Add all received s in local  (ordered by time)

OwnRequest

OwnRequest RequestQueue
OwnRequest

2L L

Request RequestQueue
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Distributed critical regions with synchronized clocks
1. Create  and attach current time-stamp

2. Add  to local  (ordered by time)
Send  to all processes

3. Delay  ( being the time it takes for a message to reach all network nodes)

4. Add all received s in local  (ordered by time)

5. While  do

5-a for all received release messages delete corresponding  in local 

OwnRequest

OwnRequest RequestQueue
OwnRequest

2L L

Request RequestQueue

Top RequestQueue( ) OwnRequest≠

Request RequestQueue
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Distributed critical regions with synchronized clocks
1. Create  and attach current time-stamp

2. Add  to local  (ordered by time)
Send  to all processes

3. Delay  ( being the time it takes for a message to reach all network nodes)

4. Add all received s in local  (ordered by time)

5. While  do

5-a for all received release messages delete corresponding  in local 

6. Enter and leave critical region

OwnRequest

OwnRequest RequestQueue
OwnRequest

2L L

Request RequestQueue

Top RequestQueue( ) OwnRequest≠

Request RequestQueue
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Distributed critical regions with synchronized clocks
1. Create  and attach current time-stamp

2. Add  to local  (ordered by time)
Send  to all processes

3. Delay  ( being the time it takes for a message to reach all network nodes)

4. Add all received s in local  (ordered by time)

5. While  do

5-a for all received release messages delete corresponding  in local 

6. Enter and leave critical region

7. Send -message to all processes

OwnRequest

OwnRequest RequestQueue
OwnRequest

2L L

Request RequestQueue

Top RequestQueue( ) OwnRequest≠

Request RequestQueue

Release
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Distributed critical regions with synchronized clocks

Analysis

• No deadlock, no individual starvation, no livelock

• Minimal request delay: 

• Minimal release delay: 

• Communications requirements per requesting process:  messages
(can be significantly improved by employing broadcast mechanisms)

2L

L

2 N 1–( )
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Distributed critical regions with synchronized clocks

Analysis

• No deadlock, no individual starvation, no livelock

• Minimal request delay: 

• Minimal release delay: 

• Communications requirements per requesting process:  messages
(can be significantly improved by employing broadcast mechanisms)

Assumptions: 

•  is known and constant

• no messages are lost

2L

L

2 N 1–( )

L
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Virtual (logical) time [Lamport 1978]

•  

with   being a causal relation between  and 
and ,  the (virtual) times associated with  and 

a b→ C a( ) C b( )<⇒
a b→ a b

C a( ) C b( ) a b



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 737 of 896 (Chapter 8: to 883)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Virtual (logical) time [Lamport 1978]

•  

with   being a causal relation between  and 
and ,  the (virtual) times associated with  and 

•  holds when

•  happens earlier than  in the same sequential process
•  denotes the event of sending of message , while  denotes the receiving event of 

(in different processes)
• there is a transitive causal relation: 

a b→ C a( ) C b( )<⇒
a b→ a b

C a( ) C b( ) a b

a b→
a b
a m b m

a e1 … en b→ → → →
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Virtual (logical) time [Lamport 1978]

•  

with   being a causal relation between  and 
and ,  the (virtual) times associated with  and 

•  holds when

•  happens earlier than  in the same sequential process
•  denotes the event of sending of message , while  denotes the receiving event of 

(in different processes)
• there is a transitive causal relation: 

•

a b→ C a( ) C b( )<⇒
a b→ a b

C a( ) C b( ) a b

a b→
a b
a m b m

a e1 … en b→ → → →

a b|| a b→( )¬ b a→( )¬∧⇒
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Virtual (logical) time

Implications:

 a b→ C a( ) C b( )<⇒

C a( ) C b( )< ?⇒
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Virtual (logical) time

Implications:

 a b→ C a( ) C b( )<⇒

C a( ) C b( )< a b→( ) a b||( )∨⇒

C a( ) C b( )= ?⇒
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Virtual (logical) time

Implications:

 a b→ C a( ) C b( )<⇒

C a( ) C b( )< a b→( ) a b||( )∨⇒

C a( ) C b( )= a b||⇒
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Virtual (logical) time
• time is no longer global and is attached to observable causal relations

• all events in between communications are considered concurrent in different processes

t

21

22 23

24

24

25 26

27

27

22 23

28 29

24

28

25

30

30 31

31

27

22

21

P3

P1

P2

30292321

26 33

32
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Implementing a virtual (logical) time

1. : 

2. :

2-a local events: 

2-b send  operations: ; Send 

2-c receive  operations: Receive ; 

Pi∀ Ci 0=

Pi∀

 ∀ Ci Ci 1+=

 ∀ m Ci Ci 1+= m Ci,( )

 ∀ m m Cm,( ) Ci max Ci Cm,( ) 1+=
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Distributed critical regions with logical clocks
Concurrently:

• -message received:
☞ Add  in local  (ordered by time)
☞ if  pending reply with  else reply with 

Request
Request RequestQueue

OwnRequest OwnRequest Ack
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Distributed critical regions with logical clocks
Concurrently:

• -message received:
☞ Add  in local  (ordered by time)
☞ if  pending reply with  else reply with 

• -message received ☞ if delete corresponding  in local 

Request
Request RequestQueue

OwnRequest OwnRequest Ack

Release Request RequestQueue
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Distributed critical regions with logical clocks
Concurrently:

• -message received:
☞ Add  in local  (ordered by time)
☞ if  pending reply with  else reply with 

• -message received ☞ if delete corresponding  in local 

• if access to critical region required:

1. Create  and attach current time-stamp

Request
Request RequestQueue

OwnRequest OwnRequest Ack

Release Request RequestQueue

OwnRequest
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Distributed critical regions with logical clocks
Concurrently:

• -message received:
☞ Add  in local  (ordered by time)
☞ if  pending reply with  else reply with 

• -message received ☞ if delete corresponding  in local 

• if access to critical region required:

1. Create  and attach current time-stamp

2. Add  to local  (ordered by time)
Send  to all processes

Request
Request RequestQueue

OwnRequest OwnRequest Ack

Release Request RequestQueue

OwnRequest

OwnRequest RequestQueue
OwnRequest
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Distributed critical regions with logical clocks
Concurrently:

• -message received:
☞ Add  in local  (ordered by time)
☞ if  pending reply with  else reply with 

• -message received ☞ if delete corresponding  in local 

• if access to critical region required:

1. Create  and attach current time-stamp

2. Add  to local  (ordered by time)
Send  to all processes

3. Wait for  & no outstanding replies

Request
Request RequestQueue

OwnRequest OwnRequest Ack

Release Request RequestQueue

OwnRequest

OwnRequest RequestQueue
OwnRequest

Top RequestQueue( ) OwnRequest=
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Distributed critical regions with logical clocks
Concurrently:

• -message received:
☞ Add  in local  (ordered by time)
☞ if  pending reply with  else reply with 

• -message received ☞ if delete corresponding  in local 

• if access to critical region required:

1. Create  and attach current time-stamp

2. Add  to local  (ordered by time)
Send  to all processes

3. Wait for  & no outstanding replies

4. Enter and leave critical region

Request
Request RequestQueue

OwnRequest OwnRequest Ack

Release Request RequestQueue

OwnRequest

OwnRequest RequestQueue
OwnRequest

Top RequestQueue( ) OwnRequest=
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Distributed critical regions with logical clocks
Concurrently:

• -message received:
☞ Add  in local  (ordered by time)
☞ if  pending reply with  else reply with 

• -message received ☞ if delete corresponding  in local 

• if access to critical region required:

1. Create  and attach current time-stamp

2. Add  to local  (ordered by time)
Send  to all processes

3. Wait for  & no outstanding replies

4. Enter and leave critical region

5. Send -message to all processes

Request
Request RequestQueue

OwnRequest OwnRequest Ack

Release Request RequestQueue

OwnRequest

OwnRequest RequestQueue
OwnRequest

Top RequestQueue( ) OwnRequest=

Release
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Distributed critical regions with logical clocks

Analysis

• No deadlock, no individual starvation, no livelock

• Minimal request delay:  request messages,  reply messages

• Minimal release delay:  release messages

• Total communications requirements per requesting process:  messages
(can be significantly improved by employing broadcast mechanisms)

N 1– N 1–

N 1–

3 N 1–( )
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Distributed critical regions with logical clocks

Analysis

• No deadlock, no individual starvation, no livelock

• Minimal request delay:  request messages,  reply messages

• Minimal release delay:  release messages

• Total communications requirements per requesting process:  messages
(can be significantly improved by employing broadcast mechanisms)

Assumption: 

• no messages are lost

No assumptions about:

• runtime of messages over the communication system

N 1– N 1–

N 1–

3 N 1–( )
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Distributed critical regions with a token ring structure
1. Organize all processes in a ring (physically or logically)

2. Pass a ‘token’-message along the ring

3. On receiving the token:

3-a If the local process wants to enter a critical section it does so now (while storing the token)

3-b The token is passed along
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Distributed critical regions with a token ring structure
1. Organize all processes in a ring (physically or logically)

2. Pass a ‘token’-message along the ring

3. On receiving the token:

3-a If the local process wants to enter a critical section it does so now (while storing the token)

3-b The token is passed along

☞ What happens if the token is lost?
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Distributed critical regions with a token ring structure
1. Organize all processes in a ring (physically or logically)

2. Pass a ‘token’-message along the ring

3. On receiving the token:

3-a If the local process wants to enter a critical section it does so now (while storing the token)

3-b The token is passed along

☞ What happens if the token is lost?

(there are simple recovery algorithms similar to the ‘election’ scheme following)
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Distributed critical regions with a central coordinator

• a global, static, central coordinator invalidates the concept of a distributed system, 
but enables very simple mutual exclusion algorithms, so …
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Distributed critical regions with a central coordinator

• a global, static, central coordinator invalidates the concept of a distributed system, 
but enables very simple mutual exclusion algorithms, so …

… we pronounce one processes as the central coordinator, but
… if this one fails, the rest of the processes are able to come up with a new coordinator.
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Distributed critical regions with a central coordinator

• a global, static, central coordinator invalidates the concept of a distributed system, 
but enables very simple mutual exclusion algorithms, so …

… we pronounce one processes as the central coordinator, but
… if this one fails, the rest of the processes are able to come up with a new coordinator.

☞ This is done by a distributed ‘election’ algorithm, i.e. the Bully-algorithm [Garcia-Molina 1982]
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Electing a central coordinator (the Bully algorithm)

Any process  which notices that the central coordinator is done, performs:P
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Electing a central coordinator (the Bully algorithm)

Any process  which notices that the central coordinator is done, performs:

1. Sending an Election-message to all processes with higher process numbers

P
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Electing a central coordinator (the Bully algorithm)

Any process  which notices that the central coordinator is done, performs:

1. Sending an Election-message to all processes with higher process numbers

2.  wait for response messages

2-a If no one responds after a pre-defined amount of time: 
 declares itself the new coordinator and sends out a Coordinator-message to all.

2-b If any process responds, the election activity for  is over 
and  waits for a Coordinator-message

P

P

P

P
P



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 762 of 896 (Chapter 8: to 883)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Electing a central coordinator (the Bully algorithm)

Any process  which notices that the central coordinator is done, performs:

1. Sending an Election-message to all processes with higher process numbers

2.  wait for response messages

2-a If no one responds after a pre-defined amount of time: 
 declares itself the new coordinator and sends out a Coordinator-message to all.

2-b If any process responds, the election activity for  is over 
and  waits for a Coordinator-message

All processes :

If  receives a Election-message from a process with a lower process number, 
it responds to the originating process and starts an election process itself (if not running already).

P

P

P

P
P

Pi
Pi
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Distributed states
• collect all local states at a given time:

t

P3

P1

P2
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Distributed states
• collect all local states at a given time:

t

P3

P1

P2

Po
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Distributed states
• collect all local states at a given time:

t

P3

P1

P2

Po
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Distributed states
• collect all local states at a given time (snapshot):

☞ collecting all local states at an absolute, global point in time is impossible

☞ make sure that the observed distributed state (snapshot) is at least consistent

t

P3

P1

P2
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Distributed states

Consistent global state (snapshot):

Make sure that all events can be uniquely divided in:

• before the snapshot (belonging to the past ):

• after the snapshot (belonging to the future ):

P
e2 P∈( ) e1 e2→( )∧ e1 P∈⇒

F
e1 F∈( ) e1 e2→( )∧ e2 F∈⇒
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Distributed states
• check for consistency: straighten out the snapshot cut

t

P3

P1

P2
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Distributed states
• check for consistency: straighten out the snapshot cut

t

P3

P1

P2
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Distributed states
• check for consistency: straighten out the snapshot cut

t

P3

P1

P2

P F
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Distributed states
• check for consistency: straighten out the snapshot cut

•   … or: the future influences the past

☞ inconsistent snapshot

t

P3

P1

P2

P F

e1 F∈( ) e1 e2→( )∧ e2 P∈⇒
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Snapshot algorithm

• Observer-process  (any process) creates a snapshot token  and saves its local state Po ts so
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Snapshot algorithm

• Observer-process  (any process) creates a snapshot token  and saves its local state 

•  sends to all other processes.

Po ts so

Po ts
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Snapshot algorithm

• Observer-process  (any process) creates a snapshot token  and saves its local state 

•  sends to all other processes.

•  which receive the  (as a token-message, or as part of another message):

• save local state  and send  to 
• attach  to all further messages, which are to be sent to other processes
• save  and ignore all further incoming ‘s

Po ts so

Po ts

P∀ i ts

si si Po
ts

ts ts
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Snapshot algorithm

• Observer-process  (any process) creates a snapshot token  and saves its local state 

•  sends to all other processes.

•  which receive the  (as a token-message, or as part of another message):

• save local state  and send  to 
• attach  to all further messages, which are to be sent to other processes
• save  and ignore all further incoming ‘s

•  which previously received  and receive a message  without :

• forward  to  (this message belongs to the snapshot)

Po ts so

Po ts

P∀ i ts

si si Po
ts

ts ts

P∀ i ts m ts

m Po
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Distributed states
• apply snapshot algorithm:

•  send out snapshot token to all

t
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P1

P2

Po

Po
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Distributed states
• apply snapshot algorithm:

•  responds with its local state

t

P3

P1

P2

Po

P2
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Distributed states
• apply snapshot algorithm:

•  forwards an untagged message

t
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P2

Po
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Distributed states
• apply snapshot algorithm:

•  responds with its local state

•  responds with its local state (due to a tagged message)

t

P3

P1

P2

Po

P1

P3



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 780 of 896 (Chapter 8: to 883)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed states
• apply snapshot algorithm:

•  ignores the snapshot token 
(token was previously received as part of a message, local state is already reported)

t

P3

P1

P2

Po

P3



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 781 of 896 (Chapter 8: to 883)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed states
• apply snapshot algorithm:

•  forwards an untagged message
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Distributed states
• apply snapshot algorithm:

•  ignores a tagged message (token was previously received, local state is already reported)

t
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P1
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Po
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Distributed states
• apply snapshot algorithm:

☞ the effective snapshot of the system 
… which is known to the observer  after it received all reports

t

P3

P1

P2

Po

Po
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Snapshot algorithm

Termination?

either

• make assumptions about the delays in the system

or

• count the sent and received messages for each process (include this in the local state)
and keep track of outstanding messages in the observer process

or …
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Consistent distributed states

Why do we need that?

• find deadlocks

• find termination / completion conditions

• any other safety of liveness property

• collect a consistent system state for further processing (distributed databases)
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A distributed server

Client

Server Server

Server

Server

ServerServer

Server

Server

Ring of servers
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A distributed server

Client

Server Server

Server

Server

ServerServer

Server

Server

SendToGroup (Job)

Ring of servers
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A distributed server

Client

Server Server

Server

Server

ServerServer

Server

Server

Contention
messages

Ring of servers

Contention
messages
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A distributed server

Client

Server

Server

Server

ServerServer

Server

Server

Ring of servers

JobCompleted (Results) Server
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A distributed server
with GroupCommunication; use GroupCommunication;

task type Client is

end Client;

task body Client is

begin

SendToGroup (PrintServerGroup, ClientId, PrintJob);

end Client;
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A distributed server
with Ada.Task_Identification; use Ada.Task_Identification;

task type PrintServer is

entry SendToServer ( PrintJob : in  Job_Type;
JobDone : out Boolean);

entry Contention ( ServerId : in Task_Id;
PrintJob : in Job_Type);

end PrintServer;
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A distributed server
task body PrintServer is
begin
loop
select

accept SendToServer (PrintJob : in Job_Type;
JobDone : out Boolean) do
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A distributed server
task body PrintServer is
begin
loop
select

accept SendToServer (PrintJob : in Job_Type;
JobDone : out Boolean) do

if not PrintJob in TurnedDownJobs then
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A distributed server
task body PrintServer is
begin
loop
select

accept SendToServer (PrintJob : in Job_Type;
JobDone : out Boolean) do

if not PrintJob in TurnedDownJobs then

if not_too_busy then
AppliedForJobs := AppliedForJobs + PrintJob;
NextServerOnRing.Contention (Current_Task, PrintJob);
Requeue InternalPrintServer.PrintJobQueue;



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 795 of 896 (Chapter 8: to 883)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

A distributed server
task body PrintServer is
begin
loop
select

accept SendToServer (PrintJob : in Job_Type;
JobDone : out Boolean) do

if not PrintJob in TurnedDownJobs then

if not_too_busy then
AppliedForJobs := AppliedForJobs + PrintJob;
NextServerOnRing.Contention (Current_Task, PrintJob);
Requeue InternalPrintServer.PrintJobQueue;

else 
TurnedDownJobs := TurnedDownJobs + PrintJob;

end if;
end if;

end SendToServer;
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or
accept Contention ( ServerId : in Task_Id;

PrintJob : in Job_Type) do
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…
or
accept Contention ( ServerId : in Task_Id;

PrintJob : in Job_Type) do
if PrintJob in AppliedForJobs then
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…
or
accept Contention ( ServerId : in Task_Id;

PrintJob : in Job_Type) do
if PrintJob in AppliedForJobs then
if ServerId = Current_Task then
InternalPrintServer.StartPrint (PrintJob);
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…
or
accept Contention ( ServerId : in Task_Id;

PrintJob : in Job_Type) do
if PrintJob in AppliedForJobs then
if ServerId = Current_Task then
InternalPrintServer.StartPrint (PrintJob);

elsif ServerID > Current_Task then
InternalPrintServer.CancelPrint (PrintJob);
NextServerOnRing.Contention (ServerId, PrintJob);
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…
or
accept Contention ( ServerId : in Task_Id;

PrintJob : in Job_Type) do
if PrintJob in AppliedForJobs then
if ServerId = Current_Task then
InternalPrintServer.StartPrint (PrintJob);

elsif ServerID > Current_Task then
InternalPrintServer.CancelPrint (PrintJob);
NextServerOnRing.Contention (ServerId, PrintJob);

else 
null; -- removing the contention message from ring

end if;
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…
or
accept Contention ( ServerId : in Task_Id;

PrintJob : in Job_Type) do
if PrintJob in AppliedForJobs then
if ServerId = Current_Task then
InternalPrintServer.StartPrint (PrintJob);

elsif ServerID > Current_Task then
InternalPrintServer.CancelPrint (PrintJob);
NextServerOnRing.Contention (ServerId, PrintJob);

else 
null; -- removing the contention message from ring

end if;
else
TurnedDownJobs := TurnedDownJobs + PrintJob;
NextServerOnRing.Contention (ServerId, PrintJob);

end if;
end Contention;
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…
or
accept Contention ( ServerId : in Task_Id;

PrintJob : in Job_Type) do
if PrintJob in AppliedForJobs then
if ServerId = Current_Task then
InternalPrintServer.StartPrint (PrintJob);

elsif ServerID > Current_Task then
InternalPrintServer.CancelPrint (PrintJob);
NextServerOnRing.Contention (ServerId, PrintJob);

else 
null; -- removing the contention message from ring

end if;
else
TurnedDownJobs := TurnedDownJobs + PrintJob;
NextServerOnRing.Contention (ServerId, PrintJob);

end if;
end Contention;

or
terminate;

end select;
end loop;

end PrintServer;
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How to construct predictable client-server systems
beyond a single remote procedure call / rendezvous?

☞ Transactions
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How to construct predictable client-server systems
beyond a single remote procedure call / rendezvous?

☞ Transactions:
• Atomicity: All or none of the sub-operations are performed. Atomicity helps achieve crash 

resilience. If a crash occurs, then it’s possible to roll back the system to the state before 
the transaction was invoked.
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How to construct predictable client-server systems
beyond a single remote procedure call / rendezvous?

☞ Transactions:
• Atomicity: All or none of the sub-operations are performed. Atomicity helps achieve crash 

resilience. If a crash occurs, then it’s possible to roll back the system to the state before 
the transaction was invoked.

• Consistency: Transforms the system from one consistent state to another.
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How to construct predictable client-server systems
beyond a single remote procedure call / rendezvous?

☞ Transactions:
• Atomicity: All or none of the sub-operations are performed. Atomicity helps achieve crash 

resilience. If a crash occurs, then it’s possible to roll back the system to the state before 
the transaction was invoked.

• Consistency: Transforms the system from one consistent state to another.

• Isolation: Results (including partial results) are not revealed unless and until the transaction
commits. If the operation accesses a shared data object, invocation does not interfere with 
other operations on the same object.
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How to construct predictable client-server systems
beyond a single remote procedure call / rendezvous?

☞ Transactions:
• Atomicity: All or none of the sub-operations are performed. Atomicity helps achieve crash 

resilience. If a crash occurs, then it’s possible to roll back the system to the state before 
the transaction was invoked.

• Consistency: Transforms the system from one consistent state to another.

• Isolation: Results (including partial results) are not revealed unless and until the transaction
commits. If the operation accesses a shared data object, invocation does not interfere with 
other operations on the same object.

• Durability: After a commit, results are guaranteed to persist, even after a subsequent system
failure.



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 808 of 896 (Chapter 8: to 883)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

How to construct predictable client-server systems
beyond a single remote procedure call / rendezvous?

☞ Transactions:
• Atomicity: All or none of the sub-operations are performed. Atomicity helps achieve crash 

resilience. If a crash occurs, then it’s possible to roll back the system to the state before 
the transaction was invoked.

• Consistency: Transforms the system from one consistent state to another.

• Isolation: Results (including partial results) are not revealed unless and until the transaction
commits. If the operation accesses a shared data object, invocation does not interfere with 
other operations on the same object.

• Durability: After a commit, results are guaranteed to persist, even after a subsequent system
failure.

☞ known as the ‘ACID’-properties



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 809 of 896 (Chapter 8: to 883)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Transactions
• Atomicity: All or none of the sub-operations are performed. Atomicity helps achieve crash 

resilience. If a crash occurs, then it’s possible to roll back the system to the state before 
the transaction was invoked.

• Consistency: Transforms the system from one consistent state to another.

• Isolation: Results (including partial results) are not revealed unless and until the transaction
commits. If the operation accesses a shared data object, invocation does not interfere with 
other operations on the same object.

• Durability: After a commit, results are guaranteed to persist, even after a subsequent system
failure.

☞ how to achieve consistency and isolation in a concurrent / distributed system?
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Transactions
• Atomicity: All or none of the sub-operations are performed. Atomicity helps achieve crash 

resilience. If a crash occurs, then it’s possible to roll back the system to the state before 
the transaction was invoked.

• Consistency: Transforms the system from one consistent state to another.

• Isolation: Results (including partial results) are not revealed unless and until the transaction
commits. If the operation accesses a shared data object, invocation does not interfere with 
other operations on the same object.

• Durability: After a commit, results are guaranteed to persist, even after a subsequent system
failure.

☞ how to achieve consistency and isolation in a concurrent / distributed system?

• if the transactions are not completely side-effect free, 
they cannot operate on the same server data-structures concurrently? …
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Transactions
• Atomicity: All or none of the sub-operations are performed. Atomicity helps achieve crash 

resilience. If a crash occurs, then it’s possible to roll back the system to the state before 
the transaction was invoked.

• Consistency: Transforms the system from one consistent state to another.

• Isolation: Results (including partial results) are not revealed unless and until the transaction
commits. If the operation accesses a shared data object, invocation does not interfere with 
other operations on the same object.

• Durability: After a commit, results are guaranteed to persist, even after a subsequent system
failure.

☞ how to achieve consistency and isolation in a concurrent / distributed system?

• if the transactions are not completely side-effect free, 
they cannot operate on the same server data-structures concurrently? …

… maybe we can implement the appearance of isolation and the full effect of consistency?



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 812 of 896 (Chapter 8: to 883)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

A closer look at transactions
• Transactions consist of a sequence of individual operations.

• If two operations out of two transactions can be performed in any order 
with the same final effect, they are commutative and not critical for our purposes.

• Some of the operations out of transactions have side-effects ☞ those are the critical operations.

• Any sequential execution of multiple transactions 
fulfils the ACID-properties, by definition of a single transaction.

• Some concurrent executions (interleavings) of multiple transactions 
might fulfil the ACID-properties.
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A closer look at transactions
• Transactions consist of a sequence of individual operations.

• If two operations out of two transactions can be performed in any order 
with the same final effect, they are commutative and not critical for our purposes.

• Some of the operations out of transactions have side-effects ☞ those are the critical operations.

• Any sequential execution of multiple transactions 
fulfils the ACID-properties, by definition of a single transaction.

• Some concurrent executions (interleavings) of multiple transactions 
might fulfil the ACID-properties.

☞ If a specific interleaving can be shown to be equivalent to a specific sequential execution 
of the involved transactions then this specific interleaving is called ‘serializable’.
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A closer look at transactions
• Transactions consist of a sequence of individual operations.

• If two operations out of two transactions can be performed in any order 
with the same final effect, they are commutative and not critical for our purposes.

• Some of the operations out of transactions have side-effects ☞ those are the critical operations.

• Any sequential execution of multiple transactions 
fulfils the ACID-properties, by definition of a single transaction.

• Some concurrent executions (interleavings) of multiple transactions 
might fulfil the ACID-properties.

☞ If a specific interleaving can be shown to be equivalent to a specific sequential execution 
of the involved transactions then this specific interleaving is called ‘serializable’.

☞ Construct an interleaving which ensures that no transaction ever encounters 
an inconsistent state (ensure the appearance of isolation).
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Achieving serializability

• If two side-effecting operations out of two different transactions (affecting the same object) 
cannot be executed in any order with the same final effect 
then those are conflicting pairs of operations.
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Achieving serializability

• If two side-effecting operations out of two different transactions (affecting the same object) 
cannot be executed in any order with the same final effect 
then those are conflicting pairs of operations.

☞ For serializability of two transactions it is necessary and sufficient for the
order of their invocations of all conflicting pairs of operations to be the
same for all the objects which are invoked by both transactions.
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Achieving serializability

• If two side-effecting operations out of two different transactions (affecting the same object) 
cannot be executed in any order with the same final effect 
then those are conflicting pairs of operations.

☞ For serializability of two transactions it is necessary and sufficient for the
order of their invocations of all conflicting pairs of operations to be the
same for all the objects which are invoked by both transactions.

Order of operations needs to be determined:

☞ distributed time-stamps are required, e.g. Lamport clocks
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Serialization graphs
☞ For serializability of two transactions it is necessary and sufficient for the

order of their invocations of all conflicting pairs of operations to be the
same for all the objects which are invoked by both transactions.

☞ Above order gives also an order dependency between the transactions as a whole.
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Serialization graphs
☞ For serializability of two transactions it is necessary and sufficient for the

order of their invocations of all conflicting pairs of operations to be the
same for all the objects which are invoked by both transactions.

☞ Above order gives also an order dependency between the transactions as a whole.

• Serialization graph: directed graph; vertices  represent transactions ; 
edges  represent that an observer witnessed that order dependency.

i Ti
Ti Tj→
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Serialization graphs
☞ For serializability of two transactions it is necessary and sufficient for the

order of their invocations of all conflicting pairs of operations to be the
same for all the objects which are invoked by both transactions.

☞ Above order gives also an order dependency between the transactions as a whole.

• Serialization graph: directed graph; vertices  represent transactions ; 
edges  represent that an observer witnessed that order dependency.

A multiple transactions interleaving is serializable 
its serialization graph is acyclic

i Ti
Ti Tj→

  ⇔
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Transaction schedulers

Three major designs:

• Locking methods:
Impose strict mutual exclusion on all critical sections.
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Transaction schedulers

Three major designs:

• Locking methods:
Impose strict mutual exclusion on all critical sections.

• Time-stamp ordering:
Note relative starting times and keep order dependencies consistent.



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 823 of 896 (Chapter 8: to 883)

Real-Time & Embedded SystemsConcurrent & Distributed Systems
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Transaction schedulers

Three major designs:

• Locking methods:
Impose strict mutual exclusion on all critical sections.

• Time-stamp ordering:
Note relative starting times and keep order dependencies consistent.

• “Optimistic” methods:
Go ahead until a conflict is observed - then roll back.
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Transaction schedulers – Locking methods
Locking methods include the possibility of deadlocks ☞ careful from here on out …
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Transaction schedulers – Locking methods
Locking methods include the possibility of deadlocks ☞ careful from here on out …

• Complete resource allocation before the start and release at the end of every transaction:
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Transaction schedulers – Locking methods
Locking methods include the possibility of deadlocks ☞ careful from here on out …

• Complete resource allocation before the start and release at the end of every transaction:
☞ this will impose a strict sequential execution of all critical transactions.
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Transaction schedulers – Locking methods
Locking methods include the possibility of deadlocks ☞ careful from here on out …

• Complete resource allocation before the start and release at the end of every transaction:
☞ this will impose a strict sequential execution of all critical transactions.

• (Strict) two-phase locking:
Each transaction follows the following two phase pattern during its operation:

• Growing phase: locks can be acquired, but not released
• Shrinking phase: locks can be released, but not acquired (two phase locking) or

locks are released on commit (strict two phase locking).
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Transaction schedulers – Locking methods
Locking methods include the possibility of deadlocks ☞ careful from here on out …

• Complete resource allocation before the start and release at the end of every transaction:
☞ this will impose a strict sequential execution of all critical transactions.

• (Strict) two-phase locking:
Each transaction follows the following two phase pattern during its operation:

• Growing phase: locks can be acquired, but not released
• Shrinking phase: locks can be released, but not acquired (two phase locking) or

locks are released on commit (strict two phase locking).

☞ possible deadlocks
☞ serializable interleavings
☞ strict isolation (in case of strict two-phase locking)
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Transaction schedulers – Locking methods
Locking methods include the possibility of deadlocks ☞ careful from here on out …

• Complete resource allocation before the start and release at the end of every transaction:
☞ this will impose a strict sequential execution of all critical transactions.

• (Strict) two-phase locking:
Each transaction follows the following two phase pattern during its operation:

• Growing phase: locks can be acquired, but not released
• Shrinking phase: locks can be released, but not acquired (two phase locking) or

locks are released on commit (strict two phase locking).

☞ possible deadlocks
☞ serializable interleavings
☞ strict isolation (in case of strict two-phase locking)

• Semantic locking: Allow for separate read-only and write-locks
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Transaction schedulers – Locking methods
Locking methods include the possibility of deadlocks ☞ careful from here on out …

• Complete resource allocation before the start and release at the end of every transaction:
☞ this will impose a strict sequential execution of all critical transactions.

• (Strict) two-phase locking:
Each transaction follows the following two phase pattern during its operation:

• Growing phase: locks can be acquired, but not released
• Shrinking phase: locks can be released, but not acquired (two phase locking) or

locks are released on commit (strict two phase locking).

☞ possible deadlocks
☞ serializable interleavings
☞ strict isolation (in case of strict two-phase locking)

• Semantic locking: Allow for separate read-only and write-locks
☞ higher level of concurrency (see also: use of functions in protected objects)
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Transaction schedulers – Time stamp ordering
• Put a unique time-stamp (any global order criterion) on every transaction upon start.

Each involved object can inspect the time-stamps of all requesting transactions.

• Case 1: 
A transaction with a time-stamp later than all currently active transactions applies:
☞ the request is accepted and the transaction can go ahead

• Case 2: 
A transaction with a time-stamp earlier than all currently active transactions applies:
☞ the request is not accepted and the applying transaction is to be aborted.
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Transaction schedulers – Time stamp ordering
• Put a unique time-stamp (any global order criterion) on every transaction upon start.

Each involved object can inspect the time-stamps of all requesting transactions.

• Case 1: 
A transaction with a time-stamp later than all currently active transactions applies:
☞ the request is accepted and the transaction can go ahead

• Case 2: 
A transaction with a time-stamp earlier than all currently active transactions applies:
☞ the request is not accepted and the applying transaction is to be aborted.

☞ no isolation ☞ cascading aborts possible.
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Transaction schedulers – Time stamp ordering
• Put a unique time-stamp (any global order criterion) on every transaction upon start.

Each involved object can inspect the time-stamps of all requesting transactions.

• Case 1: 
A transaction with a time-stamp later than all currently active transactions applies:
☞ the request is accepted and the transaction can go ahead

• Case 2: 
A transaction with a time-stamp earlier than all currently active transactions applies:
☞ the request is not accepted and the applying transaction is to be aborted.

☞ no isolation ☞ cascading aborts possible.

• Alternative case 1 (strict time-stamp ordering):
☞ the request is delayed until the currently active earlier transaction has committed
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Transaction schedulers – Time stamp ordering
• Put a unique time-stamp (any global order criterion) on every transaction upon start.

Each involved object can inspect the time-stamps of all requesting transactions.

• Case 1: 
A transaction with a time-stamp later than all currently active transactions applies:
☞ the request is accepted and the transaction can go ahead

• Case 2: 
A transaction with a time-stamp earlier than all currently active transactions applies:
☞ the request is not accepted and the applying transaction is to be aborted.

☞ no isolation ☞ cascading aborts possible.

• Alternative case 1 (strict time-stamp ordering):
☞ the request is delayed until the currently active earlier transaction has committed

☞ simple implementation, high degree of concurrency
– also in a distributed environment, as long as a global event order (time) can be supplied.
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Transaction schedulers – Optimistic concurrency control

Premise: 
If conflict is unlikely the overhead to ensure a serializable interleaving might not be justified
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Transaction schedulers – Optimistic concurrency control

Premise: 
If conflict is unlikely the overhead to ensure a serializable interleaving might not be justified

Idea:

• get a local copy (shadow copy) of the involved objects

• perform a subset of the required transactions locally

• check for the current state of the object again and see whether the results of the local opera-
tions can be embedded without violating consistency

• depending on the previous check:
either delete all local results or write them back to the actual object
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Transaction schedulers – Optimistic concurrency control
Three phases

1. Read & execute: 
generate a shadow copy of all involved objects and perform all required operations there.
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Transaction schedulers – Optimistic concurrency control
Three phases

1. Read & execute: 
generate a shadow copy of all involved objects and perform all required operations there.

2. Validate:
after local commit, check all occurred interleavings for serializability
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Transaction schedulers – Optimistic concurrency control
Three phases

1. Read & execute: 
generate a shadow copy of all involved objects and perform all required operations there.

2. Validate:
after local commit, check all occurred interleavings for serializability

3. Update or abort:
IF serializability could be ensured in step 2 then all results of involved transactions (one transac-
tion at a time) are written to all involved objects (in dependency order of the transactions).
Otherwise destroy shadow copies and possibly start over with the failed transactions.
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Transaction schedulers – Optimistic concurrency control
Three phases

1. Read & execute: 
generate a shadow copy of all involved objects and perform all required operations there.

2. Validate:
after local commit, check all occurred interleavings for serializability

3. Update or abort:
IF serializability could be ensured in step 2 then all results of involved transactions (one transac-
tion at a time) are written to all involved objects (in dependency order of the transactions).
Otherwise destroy shadow copies and possibly start over with the failed transactions.

☞ Open issue: how to gain a consistent set of shadow copies in phase one 
and how to update all involved objects consistently (atomically) in phase three?
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Transaction schedulers – Optimistic concurrency control

Premise: 
If conflict is unlikely the overhead to ensure a serializable interleaving might not be justified

Results:

☞ possibly many additional copies

☞ deadlock free

☞ maximum concurrency

☞ with more overlapping transactions this scheduler breaks down rapidly 
☞ starvation & live-locks
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Distributed transaction schedulers
The three major designs again:

• Locking methods:
Impose strict mutual exclusion on all critical sections.

• Time-stamp ordering:
Note relative starting times and keep order dependencies consistent.

• “Optimistic” methods:
Go ahead until a conflict is observed - then roll back.

☞ Commit or abort operations are required in many places above

How to implement those in a distributed environment?
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Two phase commit protocol

Start-up (initialization) phase

Client

Server Server

Server

Server

ServerServer

Server

Server

(Transaction)

Ring of servers

Data object
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Two phase commit protocol

Start-up (initialization) phase

Client

Server Server

Server

Server

ServerServer

Server

Server

SendToGroup (Transaction)
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Two phase commit protocol

Start-up (initialization) phase

Client

Server Server

Server

Server

ServerServer

Server

Server
Determine coordinator
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Two phase commit protocol

Start-up (initialization) phase

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Determine coordinator
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Two phase commit protocol

Start-up (initialization) phase

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Setup & start operating
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Two phase commit protocol

Start-up (initialization) phase

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Setup & start operating

Shadow copy
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Two phase commit protocol

Phase 1: Determine result state

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Coordinator requests 

Shadow copy

& assembles votes
(commit or abort)



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 850 of 896 (Chapter 8: to 883)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Two phase commit protocol

Phase 1: Determine result state

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Coordinator requests 

Shadow copy

& assembles votes
(commit or abort)

II mm pp oo rr tt aa nn tt ::

‘‘ CC oo mm mm ii tt ’’   mm ee aa nn ss   jj uu ss tt   tt hh aa tt

(( ee vv ee nn   ii nn   cc aa ss ee   oo ff   aa   cc rr aa ss hh ))



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 851 of 896 (Chapter 8: to 883)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Two phase commit protocol

Phase 2: Implement results

Client

Coord. Server

Server

Server

ServerServer

Server

Server
All commit:

Shadow copy

Coordinator tells everybody
to actually commit
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Two phase commit protocol

Phase 2: Implement results

Client

Coord. Server

Server

Server

ServerServer

Server

Server
All commit:

Shadow copies are destroyed
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Two phase commit protocol

Phase 2: Implement results

Client

Coord. Server

Server

Server

ServerServer

Server

Server
All commit:

Everybody responds with
‘done’
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Two phase commit protocol

or phase 2: global roll back

Client

Coord. Server

Server

Server

ServerServer

Server

Server
One abort:

Shadow copy

Coordinator tells everybody
to abort
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Two phase commit protocol

or phase 2: global roll back

Client

Coord. Server

Server

Server

ServerServer

Server

Server
One abort:

Shadow copies are destroyed
(without update)
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Two phase commit protocol

Phase 2: Report result of distributed transaction

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Commit or abort:

Coordinator reports
to client
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Distributed transactions
Evaluating the three major design methods in a distributed environment:

• Locking methods:
Large overheads; distributed deadlock detection required.
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Distributed transactions
Evaluating the three major design methods in a distributed environment:

• Locking methods:
Large overheads; distributed deadlock detection required.

• Time-stamp ordering:
If time-stamps can be provided: Recommends itself for distributed applications, 

since decisions are taken locally and communication overhead is relatively small.
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Distributed transactions
Evaluating the three major design methods in a distributed environment:

• Locking methods:
Large overheads; distributed deadlock detection required.

• Time-stamp ordering:
If time-stamps can be provided: Recommends itself for distributed applications, 

since decisions are taken locally and communication overhead is relatively small.

• “Optimistic” methods:
Maximises concurrency, but also data replication; chances of aborts and roll-backs are higher.
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Distributed transactions
Evaluating the three major design methods in a distributed environment:

• Locking methods:
Large overheads; distributed deadlock detection required.

• Time-stamp ordering:
If time-stamps can be provided: Recommends itself for distributed applications, 

since decisions are taken locally and communication overhead is relatively small.

• “Optimistic” methods:
Maximises concurrency, but also data replication; chances of aborts and roll-backs are higher.

☞ side-aspect data replication: large body of literature on this topic 
(see: distributed data-bases / operating systems / shared memory, cache management, …)
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Redundancy (replicated servers)
Premise: 

A crashing server computer should not compromise the functionality of the system 
(full fault tolerance)
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☞ Replication: at least k+1 servers.
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Premise: 

A crashing server computer should not compromise the functionality of the system 
(full fault tolerance)

• k computers inside the server cluster might crash without losing functionality.

☞ Replication: at least k+1 servers.

• the server cluster can reorganize any time (and specifically after the loss of a computer).
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Premise: 

A crashing server computer should not compromise the functionality of the system 
(full fault tolerance)

• k computers inside the server cluster might crash without losing functionality.

☞ Replication: at least k+1 servers.

• the server cluster can reorganize any time (and specifically after the loss of a computer).

☞ Hot stand-by components, dynamical server group management.
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Redundancy (replicated servers)
Premise: 

A crashing server computer should not compromise the functionality of the system 
(full fault tolerance)

• k computers inside the server cluster might crash without losing functionality.

☞ Replication: at least k+1 servers.

• the server cluster can reorganize any time (and specifically after the loss of a computer).

☞ Hot stand-by components, dynamical server group management.

• the server is described fully by the current state and the sequence of messages received.
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Redundancy (replicated servers)
Premise: 

A crashing server computer should not compromise the functionality of the system 
(full fault tolerance)

• k computers inside the server cluster might crash without losing functionality.

☞ Replication: at least k+1 servers.

• the server cluster can reorganize any time (and specifically after the loss of a computer).

☞ Hot stand-by components, dynamical server group management.

• the server is described fully by the current state and the sequence of messages received.

☞ State machines: we have to implement consistent state adjustments (re-organization) 
and consistent message passing (order needs to be preserved).

[Schneider90]
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Redundancy (replicated servers)

Message processing stages in each server:

received deliverable

processed
Message received locally Message processed locally

Message received by 
all active servers
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Fault tolerance (replicated servers)

Start-up (initialization) phase

Client

Server Server

Server

Server

ServerServer

Server

Server

(Job)

Ring of identical servers
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Fault tolerance (replicated servers)

Start-up (initialization) phase

Client

Server Server

Server

Server

ServerServer

Server

Server
Determine coordinator
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Fault tolerance (replicated servers)

Start-up (initialization) phase

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Coordinator determined
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Fault tolerance (replicated servers)

Receive job-message at coordinator

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Coordinator receives job

SendToCoordinator (Job)
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Fault tolerance (replicated servers)

Distribute job-message

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Coordinator distributes

job both ways
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Fault tolerance (replicated servers)

Distribute job-message

Client

Coord. Server

Server

Server

ServerServer

Server

Server
All server received the job
(but nobody knows that)
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Fault tolerance (replicated servers)

Distribute job-message

Client

Coord. Server

Server

Server

ServerServer

Server

Server
First server detects
two job-messages
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Fault tolerance (replicated servers)

Distribute job-message

Client

Coord. Server

Server

Server

ServerServer

Server

Server
All servers detect

both job messages
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Fault tolerance (replicated servers)

servers decide whether this message is known to everybody else ☞ process job

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Coordinator distributes

job both ways

each server

2 received messages means:
“everybody else must have seen this too 

 received 0, 1, or 2 messages:

☞ process job“
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Fault tolerance (replicated servers)

Coordinator processes job-message

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Coordinator receives 2 messages:

process job
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Fault tolerance (replicated servers)

All servers are in the same state again - Coordinator delivers response

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Coordinator responds

to client
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Fault tolerance (replicated servers)

servers crash!, new servers joining, old servers leaving …
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Fault tolerance (replicated servers)

servers crash!, new servers joining, old servers leaving …

☞ somebody (either a server detecting a time-out, or an explicitly joining or leaving server)
sends a ‘FormNewGroup’ signal to all current servers 
(this message passing mechanism is assumed to be part of the distributed operating system)
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Fault tolerance (replicated servers)

servers crash!, new servers joining, old servers leaving …

☞ somebody (either a server detecting a time-out, or an explicitly joining or leaving server)
sends a ‘FormNewGroup’ signal to all current servers 
(this message passing mechanism is assumed to be part of the distributed operating system)

1. Wait for local job processing to complete or time-out

2. Store local consistent state 

3. Re-organize server ring, send local state around the ring

4. If a state  with  is received ☞  := 

5. Elect coordinator

6. Enter ‘Coordinator-’ or ‘Replicate-mode’

Si

Sj j i> Si Sj
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Summary 

Distributes Systems
• Networks

• OSI, topologies, standards

• Time

• Synchronized clocks, virtual (logical) times
• Distributed critical regions (synchronized, logical, token ring)

• Distributed systems

• Elections
• Distributed states, consistent snapshots
• Distributed servers (replicates, distributed processing, distributed commits)
• Transactions (ACID properties, serializable interleavings, transaction schedulers)



Summary
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Summary

Topics in this course

1.Concurrency [3]

2.Mutual exclusion [3]

3.Condition 
synchronization [4]

4.Non-determinism in
concurrent systems [2]

5.Scheduling [2]

6.Safety and liveness [3]

7.Architectures 
for CDS [3]

8.Distributed systems [8]



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 886 of 896 (Chapter 9: to 896)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary 

Concurrency – The Basic Concepts
• Forms of concurrency

• Models and terminology

• Abstractions and perspectives: computer science, physics & engineering
• Observations: non-determinism, atomicity, interaction, interleaving
• Correctness in concurrent systems

• Processes and threads

• Basic concepts and notions
• Process states

• First examples of concurrent programming languages:

• Explicit concurrency: Ada95
• Implicit concurrency: functional programming – Lisp, Haskell, Caml, Miranda
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Summary 

Mutual Exclusion
• Definition of mutual exclusion

• Atomic load and atomic store operations

• … some classical errors
• Decker’s algorithm, Peterson’s algorithm
• Bakery algorithm

• Realistic hardware support

• Atomic test-and-set, Atomic exchanges, Memory cell reservations

• Semaphores

• Basic semaphore definition
• Operating systems style semaphores
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Summary

Synchronization

• Shared memory based synchronization

• Flags, condition variables, semaphores, …
… conditional critical regions, monitors, protected objects.

• Guard evaluation times, nested monitor calls, deadlocks, …
… simultaneous reading, queue management.

• Synchronization and object orientation, blocking operations and re-queuing.

• Message based synchronization

• Synchronization models
• Addressing modes
• Message structures
• Examples



© 2008 Uwe R. Zimmer, The Australian National Univeristy Page 889 of 896 (Chapter 9: to 896)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Non-Determinism

• Selective synchronization

• Selective accepts
• Selective calls
• Indeterminism in message based synchronization

• General Non-Determinism in Concurrent Systems
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Scheduling

• Basic performance based scheduling

•  is not known: first-come-first-served (FCFS), round robin (RR), 
and feedback-scheduling

•  is known: shortest job first (SJF), highest response ration first (HRRF), 
shortest remaining time first (SRTF)-scheduling

• Basic predictable scheduling

• Fixed Priority Scheduling (FPS) with Rate Monotonic (RMPO)
• Earliest Deadline First (EDF)

Ci

Ci
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Safety & Liveness
• Liveness

• Fairness

• Safety

• Deadlock detection
• Deadlock avoidance
• Deadlock prevention

• Failure modes

• Definitions, fault sources and basic fault tolerance

• Atomic & Idempotent operations

• Definitions & implications
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Architectures

• Academic

• occam 2.1, CSP, …

• Workfloor

• Ada95, Java, …

• Environments / Operating Systems

• Operating systems architectures
• UNIX as a concept and basic UNIX features
• POSIX
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Distributes Systems
• Networks

• OSI, topologies, standards

• Time

• Synchronized clocks, virtual (logical) times
• Distributed critical regions (synchronized, logical, token ring)

• Distributed systems

• Elections
• Distributed states, consistent snapshots
• Distributed servers (replicates, distributed processing, distributed commits)
• Transactions (ACID properties, serializable interleavings, transaction schedulers)
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Exam preparations

Helpful
• distinguish central aspects from excursions, examples & implementations

• gain full understanding of all central aspects

• be able to categorize any given example under a general theme discussed in the lecture

• explain to and discuss the topics with other (preferably better) students

• try whether you can connect aspects from different parts of the lecture

Not helpful
• remembering the slides word by word

• learn the Ada95 / Unix / Posix / Occam / sockets reference manual page by page
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Course evaluation

• Was the balance of concepts and examples adequate?

• Where the examples and implementations insightful?

• Was the usage of two different environments for the assignments helpful?

• Could you gain supporting knowledge from the textbooks?

• Did you consider dropping the course? … and why didn’t you in the end?

• Too much/few material in the labs?

• Was the presentation style (slides & soundtrack & gestures) helpful?

• Would you have liked to have more homework?

• …




